• Title/Summary/Keyword: 입력점 강성해석

Search Result 4, Processing Time 0.019 seconds

Dynamic Analysis of HVAC Case for Passenger Car (승용차용 HVAC Case의 동특성 해석)

  • Yook, Ji-Yong;Cha, Yong-Kil;Lim, Jung-Su;Kim, Kwang-Il;Kang, Sung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.101-108
    • /
    • 2009
  • This paper presents dynamic analysis of HVAC(heating ventilation & air conditioning) heater case which consists of heater and evaporator unit for passenger car. To analyze the dynamic characteristics of HVAC heater case, finite element model which consists of shell elements is constructed for modal analysis and experimental modal analysis has been conducted. Finite element analysis results are compared with experimental results to evaluate of validity of finite element model. After identifying mode shape and natural frequency of HVAC heater case, local stiffness of HVAC case is evaluated through point mobility using finite element analysis and experiment.

평판구조물의 진동 및 음향방사 - 통계적 접근

  • 강준수;김정태;김관주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.113-117
    • /
    • 1996
  • 구조물의 진동에 의해 소음이 방사되는 현상은 기계에서 소음의 발생원으로 볼 수 있기 때문에 기게류의 소음을 예측하거나 저감방안을 제시하기 위해서는 구조물의 동특성과 방사특성을 이해하고 있어야 한다. 특히, 엔진블럭, 펀치프레스, 배의 갑판구조물등과 같은 대다수의 소음 발생기계는 평판의 형상을 가진 구조물로서 기계적인 충격 등에 의해 그 표면에서 소음이 발생되므로 강성을 증가시키고, 소음저감을 목적으로 빔과 같은 보강재를 통해 보강되어 있다. 그런데, 해석적인 방법으로는 평판이나 원판 또는 구와 같은 단순한 형태의 특정구조물에 대해서만 그 결과를 얻을 수 있으므로 이와 같은 불연속 평판구조물의 진동 및 방사특성은 평판에 대한 순수 이론으로는 해석이 곤란하여 따라서 본 연구에서는 수치해석적인 방법을 통해 이를 해결하고자 하였다. 수치해석적인 방법으로는 유한요소법(FEM)과 경계요소법(BEM), 및 통계적 에너지 해석기법(SEA)등이 있으며 구조물의 진동-소음연성문제의 경우에 있어서는, 진동해석을 FEM과 SEA으로, 공기 중에서의 방사현상은 BEM으로 예측하고 있다. 본 연구에서는 재질이 균일한 얇은 2차원 평판구조와 보강평판에 대해서 진동특성은 유한요소해석 프로그램을 사용하여 해석하였으며 이때의 진동특성값을 입력데이터로 사용하여 경계요소해석 프로그램으로 방사효율 등을 예측하였다. 또한 이 과정에서 2차원 평판구조의 모우드 밀도와 가진점 모빌리티의 실수값이 가지는 평균치의 물리적 특성을 분석하였으며, 추후 실험을 통해 이를 검증코자 한다.

  • PDF

A Numerical Study on the Flow and Heat Transfer Characteristics of Aluminum Pyramidal Truss Core Sandwich (알루미늄 피라미드 트러스 심재 샌드위치의 열유동 특성에 관한 수치해석 연구)

  • Kang, Jong-Su;Kim, Sang-Woo;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.638-644
    • /
    • 2019
  • In this study, the fluid flow and heat transfer characteristics within sandwich panels are investigated using computational fluid dynamics. Within the sandwich panels having periodic cellular cores, air can freely move inside the core section so that the structure is able to perform multi-functional roles such as simultaneous load bearing and heat dissipation. Thus, there needs to examine the thermal and flow analysis with respect to design variables and various conditions. In this regard, ANSYS Fluent was utilized to explore the flow and heat transfer within the pyramidal truss sandwich structures by varying the truss angle and inlet velocity. Without the entry effect in the first unitcell, the constant rate of pressure and the constant rate of Nusselt number was observed. As a result, it was demonstrated that Nusselt number increases and friction factor decreases as the inlet velocity increases. Moreover, the rate of Nusselt number and friction factor was appreciable in the range of V=1-5m/s due to the transition from laminar to turbulent flow. Regarding the effect of design variable, the variation of truss angle did not significantly influence the characteristics.

Structural Optimization of Active Vehicle Suspension Systems (능동형 차량 현가장치의 성능 향상을 위한 구조 최적화)

  • 김창동;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1381-1388
    • /
    • 1993
  • This paper presents a method for the simultaneous optimal design of structural and control systems. Sensitivities of performance index with respect to structural design variables are analyzed. The structural design variables are optimized to minimize the performance index by use of conjugate gradient method. The method is applied to a half model of an active vehicle suspension system with elastic body moving on a randomly profiled road. The suspension control force of an optimally controlled system in the presence of measurement errors are calculated by use of linear quadratic Gaussian control theory and Kalman filter theory. The performance index contains ride comfort, road holding and working space of suspension. The structural design variables taken are stiffness, daming properties and the position of the suspension system. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of an optimal simultaneous structure/control system is compared with that of an optimal controlled system.