• Title/Summary/Keyword: 입력에너지

Search Result 816, Processing Time 0.033 seconds

The Analysis of Regional Scale Topographic Effect Using MM5-A2C Coupling Modeling (국지규모 지형영향을 고려하기 위한 MM5-A2C 결합 모델링 특성 분석)

  • Choi, Hyun-Jeong;Lee, Soon-Hwan;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.210-221
    • /
    • 2015
  • The terrain features and surface characteristics are the most important elements not only in meteorological modeling but also in air quality modeling. The diurnal evolution of local climate over complex terrain may be significantly controlled by the ground irregularities. Such topographic features can affect a thermally driven flow, either directly by causing changes in the wind direction or indirectly, by inducing significant variations in the ground temperature. Over a complex terrain, these variations are due to the nonuniform distribution of solar radiation, which is highly determined by the ground geometrical characteristics, i.e. slope and orientation. Therefore, the accuracy of prediction of regional scale circulation is strong associated with the accuracy of land-use and topographic information in meso-scale circulation assessment. The objective of this work is a numerical simulation using MM5-A2C model with the detailed topography and land-use information as the surface boundary conditions of the air flow field in mountain regions. Meteorological conditions estimated by MM5-A2C command a great influence on the dispersion of mountain areas with the reasonable feature of topography where there is an important difference in orographic forcing.

Standard Penetration Test Performance in Sandy Deposits (모래지반에서 표준관입시험에 따른 관입거동)

  • Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.39-48
    • /
    • 2013
  • This paper presents an equation to depict the penetration behavior during the standard penetration test (SPT) in sandy deposits. An energy balance approach is considered and the driving mechanism of the SPT sampler is conceptually modeled as that of a miniature open-ended steel pipe pile into sands. The equation consists of three sets of input parameters including hyperbolic parameters (m and ${\lambda}$) which are difficult to determine. An iterative technique is thus applied to determine the optimized values of m and ${\lambda}$ using three measured values from a routine SPT data. It is verified from a well-documented record that the simulated penetration curves are in good agreement with the measured ones. At a given depth, the increase in m results in the decrease in ${\lambda}$ and the increase in the curvature of the penetration curve as well as the simulated N-value. Generally, the predicted penetration curve becomes nearly straight for the portion of exceeding the seating drive zone, which is more pronounced as soil density increases. Thus, the simulation method can be applied to extrapolating a prematurely completed test data, i.e., to determining the N value equivalent to a 30 cm penetration. A simple linear equation is considered for obtaining similar results.

Numerical Analysis for the Conjugate Heat Transfer of Skin Under Various Temperature Conditions of Contrast Therapy (냉온 자극의 다양한 온도경계조건들에 대한 피부 내 온도 분포의 수치해석)

  • Park, Da Ae;Oh, Han Nah;Jeon, Byoung Jin;Kim, Eun Jeong;Lee, Seung Deok;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.897-903
    • /
    • 2015
  • In this paper, the contrast therapy of skin was numerically investigated by solving the conjugate heat transfer problem. A finite volume method based on the SIMPLE algorithm was adopted to solve the axisymmetric incompressible Navier-Stokes equations, coupled with an energy equation. These equations are strongly coupled with the Pennes bio-heat equation in order to consider the effect of blood perfusion rate. We investigated the thermal response of skin at some selected depths for various input temperature profiles of a stimulator for contrast therapy. From the numerical simulations, the regions with cold/hot threshold temperatures were found for five input temperature profiles. It was shown that the temperature varies mildly for different input profiles as the depth increases, owing to the Pennes effect. The input temperatures for effective hot/cold stimulation of dermis layer were found to be $47^{\circ}C$ and $7^{\circ}C$, respectively. The present numerical results will be used for finding an optimal temperature profile of a stimulator for contrast therapy.

Analyzing Spatial and Temporal Variation of Ground Surface Temperature in Korea (국내 지면온도의 시공간적 변화 분석)

  • Koo Min-Ho;Song Yoon-Ho;Lee Jun-Hak
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.255-268
    • /
    • 2006
  • Recent 22-year (1981-2002) meteorological data of 58 Korea Meteorological Adminstration (KMA) station were analyzed to investigate spatial and temporal variation of surface air temperature (SAT) and ground surface temperature (GST) in Korea. Based on the KMA data, multiple linear regression (MLR) models, having two regression variables of latitude and altitude, were presented to predict mean surface air temperature (MSAT) and mean ground surface temperature (MGST). Both models showed a high accuracy of prediction with $R^2$ values of 0.92 and 0.94, respectively. The prediction of MGST is particularly important in the areas of geothermal energy utilization, since it is a critical parameter of input for designing the ground source heat pump system. Thus, due to a good performance of the MGST regression model, it is expected that the model can be a useful tool for preliminary evaluation of MGST in the area of interest with no reliable data. By a simple linear regression, temporal variation of SAT was analyzed to examine long-term increase of SAT due to the global warming and the urbanization effect. All of the KMA stations except one showed an increasing trend of SAT with a range between 0.005 and $0.088^{\circ}C/yr$ and a mean of $0.043^{\circ}C/yr$. In terms of meteorological factors controlling variation of GST, the effects of solar radiation, terrestrial radiation, precipitation, and snow cover were also discussed based on quantitative and qualitative analysis of the meteorological data.

Comparison and Evaluation of Dynamic Modulus of Hot Mix Asphalt with Different Shift Factors (전이함수 결정법에 따른 아스팔트 혼합물의 동탄성계수 비교평가)

  • Kim, Hyun-Oh;Lee, Kwan-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.49-61
    • /
    • 2005
  • The dynamic modulus of hot mix asphalt can be determined according to the different combinations of testing temperature and loading frequency. The superposition rule is adapted to get the master curve of dynamic modulus for each hot mix asphalt. There are couple of different methods to get the shift factor which is a key for making the master curve. In this paper, Arrehnius, 2002 AASHTO, and experimental method was employed to get the master curve. Evaluation of dynamic modulus for 25mm base course of hot mix asphalt with granite aggregate and two asphalt binders(AP-3 and AP-5) was carried out. Superpave Level 1 Mix Design with gyratory compactor was adopted to determine the optimum asphalt binder content(OAC) and the measured ranges of OAC were between 4.1% and 4.4%. UTM was used for laboratory test. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature(-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies(0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The shift factor and activation energy for determination of master curve were calculated.

  • PDF

Ground-Roll Suppression of the Land Seismic Data using the Singular Value Decomposition (SVD) (특이값 분해를 이용한 육상 탄성파자료의 그라운드롤 제거)

  • Sa, Jin-Hyeon;Kim, Sung-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.465-473
    • /
    • 2018
  • The application of singular value decomposition (SVD) filtering is examined for attenuation of the ground-roll in land seismic data. Prior to the SVD computation to seek singular values containing the highly correlatable reflection energy, processing steps such as automatic gain control, elevation and refraction statics, NMO correction, and residual statics are performed to enhance the horizontal correlationships and continuities of reflections. Optimal parameters of SVD filtering are effectively chosen with diagnostic display of inverse NMO (INMO) corrected CSP (common shot point) gather. On the field data with dispersion of ground-roll overwhelmed, continuities of reflection events are much improved by SVD filtering than f-k filtering by eliminating the ground-roll with preserving the low-frequency reflections. This is well explained in the average amplitude spectra of the f-k and SVD filtered data. The reflectors including horizontal layer of the reservoir are much clearer on the stack section, with laminated events by SVD filtering and subsequent processing steps of spiking deconvolution and time-variant spectral whitening.

Integrated Ray Tracing Model for In-Orbit Optical Performance Simulation for GOCI (통합적 광추적 모델에 의한 해양탑재체 GOCI의 궤도 상 광학 성능 검증)

  • Ham, Seon-Jeong;Lee, Jae-Min;Kim, Seong-Hui;Yun, Hyeong-Sik;Gang, Geum-Sil;Myeong, Hwan-Chun;Kim, Seok-Hwan
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • GOCi (Geostationary Ocean Color Imager) is one of the COMS payloads that KARI is currently developing and scheduled to be in operation from around 2008. Its primary objective is to monitor the Korean coastal water environmental condition. We report the current progress in development of the integrated optical model as one of the key analysis tools for the GOCI in-orbit performance verification. The model includes the Sun as the emitting light source. The curved Earth surface section of 2500 km x 2500 km includingthe Korean peninsular os defined as a Lambertian scattering surface consisted of land and sea surface. From its geostationary orbit, the GOCI optical system observes the reflected light from the surfaces with varying reflectance representing the changes in its environmental conditions. The optical ray tracing technique was used to demonstrate the GOCI in-orbit performances such as red tide detection. The computational concept, simulation results and its implications to the on-going development of GOCI are presented.

  • PDF

A Study of Heterogeneity Corrections for Radiation Treatment Planning (방사선 치료계획 시 불균질 보정에 관한 고찰)

  • Lee, Je-Hee;Kim, Bo-Gyum;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.89-96
    • /
    • 2006
  • Purpose: To study effectiveness of heterogeneity correction of internal-body inhomogeneities and patient positioning immobilizers in dose calculation, using images obtained from CT-Simulator. Materials and Methods: A water phantom($250{\times}250{\times}250mm^3$) was fabricated and, to simulate various inhomogeneity, 1) bone 2) metal 3) contrast media 4) immobilization devices(Head holder/pillow/Vac-lok) were inserted in it. And then, CT scans were peformed. The CT-images were input to Radiation Treatment Planning System(RTPS) and the MUs, to give 100 cGy at 10 cm depth with isocentric standard setup(Field Size=$10{\times}10cm^2$, SAD=100 cm), were calculated for various energies(4, 6, 10 MV X-ray). The calculated MUs based on various CT-images of inhomogeneities were compared and analyzed. Results: Heterogeneity correction factors were compared for different materials. The correction factors were $2.7{\sim}5.3%$ for bone, $2.7{\sim}3.8%$ for metal materials, $0.9{\sim}2.3%$ for contrast media, $0.9{\sim}2.3%$ for Head-holder, $3.5{\sim}6.9%$ for Head holder+pillow, and $0.9{\sim}1.5%$ for Vac-lok. Conclusion: It is revealed that the heterogeneity correction factor calculated from internal-body inhomogeneities have various values and have no consistency. and with increasing number of beam ports, the differences can be reduced to under 1%, so, it can be disregarded. On the other hand, heterogeneity correction from immobilizers must be regarded enough to minimize inaccuracy of dose calculation.

  • PDF

Gyroscope Signal Denoising of Ship's Autopilot using Kalman Filter and Multi-Layer Perceptron (칼만필터와 다층퍼셉트론을 이용한 선박 오토파일럿의 자이로스코프 신호 잡음제거)

  • Kim, Min-Kyu;Kim, Jong-Hwa;Yang, Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.809-818
    • /
    • 2019
  • Since January 1, 2020, the International Maritime Organization (IMO) has put in place strong regulations to reduce air pollution caused by ships by lowing the upper limit of ship fuel oil sulfur content from 3.5% to 0.5% for ships passing through all sea areas around the world. Although it is important to reduce air pollutants by using fuel oil with low sulfur content, reducing the amount of energy waste through the economic operation of a ship can also help reduce air pollutants. Ships can follow designated routes accurately even under the influence of noise using autopilot systems. However, regardless of their quality, the performance of these systems is af ected by noise; heading angles with added measurement noise from the gyroscope are input into the autopilot system and degrade its performance. A technique to solve these problems reduces noise effects through the application of a Kalman filter, which is widely used in condition estimation. This method, however, cannot completely eliminate the effects of noise. Therefore, to further improve noise removal performances, in this study we propose a better denoising method than the Kalman filter technique by applying a multi-layer perceptron (MLP) in forward direction motion and a Kalman Filter in rotation motion. Simulations show that the proposed method improves forward direction motion by preventing the malfunction of a rudder more so than merely using a Kalman Filter.

A 12Bit 80MHz CMOS D/A Converter with active load inverter switch driver (능동부하 스위치 구동 회로를 이용한 12비트 80MHz CMOS D/A 변환기 설계)

  • Nam, Tae-Kyu;Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Kim, Soo-Jae;Lee, Sang-Min;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.38-44
    • /
    • 2007
  • This paper describes a 12 bit 80MHz CMOS D/A converter for wireless transceiver. Proposed circuit in the paper employes segmented structure which consists of four stage 3bit thermometer decoders. Proposed D/A converter is manufactured 0.35um CMOS n-well digital standard process and measurement results show a ${\pm}1.36SB/{\pm}0.62LSB$ of INL/DNL and $46pV{\cdot}s$ of glitch energy. SNR and SFDR are measured to be 58.5dB and 64.97dB @ Fs=80MHz and Fin=19MHz with a total power consumption of 99mW. Such results proved that our work has low power consumption, high linearity, low glitch and improved dynamic performance. Therefore, our work can be appled to various high speed and high performance circuits.