• Title/Summary/Keyword: 입도제어

Search Result 108, Processing Time 0.03 seconds

Effects of the Addition of Metallic Salts and Polyhydric Alcohols on the Formation of Zinc Complex-compound Particle (아연 착화합물 입자형성에 미치는 금속염 및 다가알코올 첨가의 영향)

  • In, Se-Jin
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • The experiments have been performed to obtain zinc complex compound with smaller particle size, which is used as a charge control agent in manufacturing toner. Metallic salts and polyhydric alcohols have been studied to investigate their effects on the formation of different sizes of zinc complex-compound particle. Reactants such as zinc chloride and 3,5-di-tert-butyl salicylic acid have been used to form the complex compound. Polyethylene glycol (PEG-300), glycerin and ethylene glycol have been added into the zinc chloride solution beforehand to lower the reaction rate in the formation of zinc complex-compound. Zirconium (IV) oxychloride octahydrate has been mixed in the zinc chloride solution beforehand to restrain crystals from growing. When PEG-300 and zirconium (IV) oxychloride octahydrate are used to lower the reaction rate and to restrain the particle size from growing, the average particle size of zinc complex compound decreases from 5.28 to 1.84 ${\mu}m$, which is 34.9% of 5.28 ${\mu}m$.

Direct Preparation of Fine Nickel Powder by Slurry Reduction Method for MLCC (슬러리환원법에 의한 MLCC용 미세 니켈 분말 직접 제조)

  • Shin, Gi-Wung;Ahn, Jong-Gwan;Kim, Dong-Jin;Kim, Sang-Bae;Ahn, Jea-Woo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • Fine nickel metal powder of uniform morphology, narrow size distribution, and high purity was prepared from high purity metal solution. Slurry reduction method for the synthesis of metal powder was applied with a special interest in their fine and spherical shape. The products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Well dispersed ultrafine nickel powder with the particle size range of 100~200 nm was produced from Ni-hydrazine precursor using hydrazine as a reductant for 90 min reaction in 4.5 M NaOH solution.

Characteristics of domestic coals and efficient control of coal dust (국내 석탄광 분진의 특성과 효율적 제어)

  • Kim, Soo Hong;Kwon, Jun Wook;Kim, Sun Myung;Kim, Yun kwang;Jang, Yun Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.589-609
    • /
    • 2017
  • This study carried out the density and energy dispersive X-ray spectroscopy and particle size analysis which are the physical characteristics of coal dust by collecting samples of coal dust in the five domestic mines to control the coal dust through ventilation in the workplace for coal mining in the country. This will contribute to a more comfortable working environment by understanding the physical characteristics of the coal dust which is derived from any hard coal produced domestically. In particular, the result of PSA analysis showed that the size of coal dust sample for this study ranged from $0.007{\sim}88.614{\mu}m$ were the particles less than $3.5{\mu}m$, the size range responsible for pneumoconiosis. To observe the flow of coal dust collected on the wind speed, the fallout of coal dust produced by the wind tunnel for the wind was measured and the particle size analysis of coal dust fallout was carried out. In addition, airborne dust is measured according to the mine velocity by using a multi-stage Anderson sampler in the mine where fine dust is generated in a large amount and the wind speed is found out to control the coal dust below $3.5{\mu}m$. In addition, natural ventilation pressure of A mine was calculated to prevent over design of the main fan.

Surface Modification of Matrix and filler for Ultra High Density Elastomeric Material (초 고비중 탄성체 개발을 위한 매트릭스 탄성체 표면개질 및 충전제 제어기술 기초연구)

  • Chung, K.;Lee, D.;Yang, K.;Lee, W.;Hong, C.
    • Elastomers and Composites
    • /
    • v.40 no.2
    • /
    • pp.93-103
    • /
    • 2005
  • In this study, surface treatment of the elastomeric matrix was investigated to develop a substituting material for steel dynamic damper of automobile. The key technology is to get ultra high density elastomeric compound in order to substitute steel dynamic damper. The optimum matrix material(chloroprene rubber) and filler(metal powder) were selected for this. The several properties of elastomeric compound were examined. According to the results, the $t_{s2}$ of filled elastomeric compound was decreased with increasing the filler loading whereas the $t_{90}$ was increased. Also, tensile strength and rebound resilience were decreased with filler loading. To solve the problem of high filler loading, the photo grafting technique was employed on elastomeric matrix. The degree of grafting was determined by FTIR-ATR. Also, the filler surface was modified by chemical etching and the surface morphology was examine by SEM. After chemical treatment of filler, the particle size analyzer was used to examined the particle size, size distribution, and morphology of the modified filler.

The Effects of Particle Size Distribution on Electromagnetic Properties of Mn-Zn Ferrites (입자분포가 Mn-Zn Ferrite의 전자기적 물성에 미치는 경향)

  • 강남규;서정주;신명승;한명호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1055-1060
    • /
    • 1998
  • The effects of particle size distribution have been investigated on the high frequency low loss Mn-Zn fer-rites. The particle size distribution was controlled by milling time. Zirconia ball and engineering plastic jar were employed to avoid iron contamination from the milling media. As increasing the milling time BET value was increased from 0.55 to 3.21m2/g and mean particle size was decreased from 2.1 $\mu\textrm{m}$ to 1.0$\mu\textrm{m}$ The large specific surface area of initial powder resulted in the high density of sintered core. However starting powders with high BET lead to inhomogeneous grain growth as well as poor electromagnetic pro-perties at sintering temperature above 1300$^{\circ}C$.

  • PDF

후막공정형 CIGS($CuInGaSe_2$) 태양전지를 위한 CIGS 나노 입자의 합성

  • Gu, Sin-Il;Hong, Seung-Hyeok;Sin, Hyo-Sun;Yeo, Dong-Hun;Hong, Yeon-U;Kim, Jong-Hui;Nam, San
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.448-448
    • /
    • 2009
  • 기존에 박막공정을 이용한 CIGS 태양전지는 단가가 비싸고 공정이 복잡한 단점이 있다. 따라서 후막형 CIGS 태양전지 위한 CIGS 나노 입자의 필요성이 대두 되었다. CIGS 나노 입자를 합성하기 위한 방법은 용매열법, 콜로이달법 등이 있다. 특히 이들 방법 중에서 열용매 방식은 입도 제어가 용이하고 저압, 저온에서 간단한 공정으로 입자를 합성할 수 있다는 잠정으로 인해 많이 사용되어지고 있다. 본 연구에서는 열용매법을 이용하여, 용매양, 반응온도, 반응시간 등을 통하여 후막형 CIGS에 적합한 나노 입자를 합성하였다. XRD를 통해 상을 분석하고, SEM, 입도, B.E.T.를 통해 파우더의 평가하였다.

  • PDF

Effect of Particle Size and Temperature on the Properties of Sintered Zircon (입자 크기와 열처리 온도가 지르콘의 소결에 미치는 영향)

  • 정재욱;배경만;홍경표;문종수;강종봉
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.194-194
    • /
    • 2003
  • 지르콘은 내침식성, 내마모성, 열 충격 저항성 및 기계적 물성이 우수하여 내화재료, 연마재료 등으로 다양하게 활용된다. 이러한 지르콘의 물성은 출발원료의 입도와 순도, 첨가제, 열처리 온도 등에 크게 의존한다. 본 연구에서는 출발 물질의 평균 입도를 각각 5$\mu\textrm{m}$와 3$\mu\textrm{m}$, l$\mu\textrm{m}$ 이하로 제어하였고, 시료의 열처리 온도를 135$0^{\circ}C$, 140$0^{\circ}C$, 145$0^{\circ}C$, 150$0^{\circ}C$, 155$0^{\circ}C$로 소결하였다. 각각의 지르콘 소결체는 미세 경도 측정, 결정상 분석, 밀도 측정, 미세구조 관찰을 통하여 특성 평가하였다. 미세경도 값은 140$0^{\circ}C$에서 소결된 지르콘의 가장 높았으며, 밀도는 150$0^{\circ}C$에서 소결된 지르콘이 가장 높으며, 155$0^{\circ}C$에서 소결된 지르콘은 과소결되어 전체적으로 물성이 저하되는 것을 관찰하였다.

  • PDF

Emission Characteristics of Particulate Matter and Heavy Metals from Coal Fire Power Plants (석탄화력발전소에서 배출되는 입자상물질 및 중금속 배출 특성)

  • 장하나;유종익;이성준;김기헌;석정희;서용칠;석광설;홍지형
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.89-90
    • /
    • 2003
  • 석탄화력발전소에서는 다양한 유해물질이 발생한다 먼지, 미세먼지, 유해중금속, 황산화물(SOx), 질산화물(NOx) 등이 그것인데, 이중 황산화물과 질산화물등은 기존 방지장치로 비교적 제어가 용이하다. 반면에, 미세먼지와 유해중금속은 대기중으로 상당량이 배출되어 인체에 심각한 피해를 끼치고 있다. 우리나라 대기환경보전법에서는 대기오염물질을 가스상 물질과 입자상 물질로 구분하고 있다. 이중 입자상물질은 그 입도의 분포가 수십 나노미터에서 수십 마이크론까지 광범위하고 입도에 따른 환경위해성도 다르다. (중략)

  • PDF

Change of Calcium Carbonate Crystal Size at steady state in CMSMPR(Continuous Mixed Suspension Mixed Produce Removal) Crystallizer (연속식결정화기 정상상태에서 탄산칼슘 결정크기 변화)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.714-719
    • /
    • 2017
  • The controlled synthesis of inorganic materials with a specific size and morphology is an important factor in the development of new materials in many fields, such as nanoparticles, medicine, electronics, semiconductors, pharmaceutical sand cosmetics. Solution crystallization is one of the most widely used separation processes in the chemical and pharmaceutical industries. Calcium carbonate has attracted a great deal of attention in industry because of its numerous applications. The mean crystal size, crystal size distribution and morphology are important factors in the continuous crystallization process. In this study, the continuous crystallization of calcium carbonate by the calcium chloride process was investigated. The mean crystal size and crystal size distribution data were obtained by a particle size analyzer. The morphological imaging of the crystalswasper formed by SEM. Under steady state operation, the mean crystal size change was small, but increasing the input concentration and mixing rate increased the crystal size. In this operation, some aragonite was found, but the main crystal phase was calcite.