• Title/Summary/Keyword: 입구조건

Search Result 374, Processing Time 0.029 seconds

A Study on Steady-state and Transient Performance Simulation of Turboprop Engine(PT6A-62) (터보프롭엔진(PT6A-62)의 정.동적 성능모사에 관한 연구)

  • 공창덕;기자영;신현기
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • The performance simulation program on the turboprop engine(PT6A-62), which is a main engine of the first trainer KT-1 in republic of Korea, was developed. Characteristics of engine components were required for the steady-state performance analysis including on and off design point analysis. In most cases, these were substituted for what scaled from well known engine components characteristics with the scaling law. The developed program was compared with CASTURB program which is well known for the simulation performance analysis, such as analysis results of mass flow rate, compressor pressure ratio, fuel flow rate, power, specific fuel consumption ratio and turbine inlet temperature in the following four cases, to evaluate whether the developed program is acceptable or not. The first case was the sea level static standard condition and other cases were considered with various flight Mach numbers, altitudes. After verifying the developed program, the partload performance analysis was carried out. Transient performance analysis for various fuel schedules were performed. When the fuel step increase of 0.1sec was performed, the overshoot of the compressor turbine inlet temperature occurred. However, the fuel ramp increase for longer than 0.1sec time was performed, the overshoot could be eliminated.

  • PDF

Analytical Investigation on Temperature Rise of Liquid Oxygen in Propellant Tank (추진제 탱크내의 액체산소 온도상승에 대한 해석적 고찰)

  • Cho Namkyung;Jeong Yonggahp;Kim Youngmog;Jeong Sangkwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.25-37
    • /
    • 2005
  • For pump-fed rocket propulsion system, the temperature of LOX to be supplied to turbopump inlet should be satisfied with pump inlet temperature requirement during all operating stages, as excessive temperatures can result in cavitation due to reduction in NPSH, thus either damaging the pump or adversely affecting pump performance rise. So exact estimation of LOX temperature rise is absolutely needed for developing reliable propulsion system. This paper presents systematic analysis scheme for estimating inner process of cryogenic propellant tank which is needed for LOX temperature rise. And this paper presents LOX temperature rise and thermal stratification for all rocket operating stages including cooling, filling, waiting, pre-pressurization and firing, with the application of buoyancy driven boundary layer theory.

ITER HCCR TBM 헬륨냉각계통 개발을 위한 헬륨공급장치 구축 및 실험계획

  • Lee, Eo-Hwak;Kim, Seok-Gwon;Jin, Hyeong-Gon;Yun, Jae-Seong;Jo, Seung-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.465-465
    • /
    • 2014
  • 증식블랑켓모듈(TBM, Test Blanket Module)을 개발하여 왔다. 이 두 증식블랑켓모듈은 모두 헬륨냉각을 기반으로 개발 되어왔으며 이에 따라, 헬륨순환기, 헬륨히터 및 헬륨열교환기 등에 대한 기본적인 연구가 수행되었다. 이후 2012년 고체형 증식블랑켓모듈을 ITER TBM 개념으로 주도하기로 결정함에 따라, HCCR (Helium Cooled Ceramic Reflector) TBM의 보조계통인 하나인 헬륨냉각계통(HCS, Helium Cooling System)에 대한 개발이 본격적으로 이루어졌다. 한국원자력연구원에서는 HCCR TBM의 냉각성능을 만족하기 위하여 8 MPa, 1.5 kg/s 및 $300/500^{\circ}C$ (입구/출구 온도)의 운전조건을 갖는 헬륨냉각계통의 설계를 완료하였다. 설계된 헬륨냉각계통은 HCCR TBM에서 회수된 약 $450^{\circ}C$의 헬륨을 열회수기(recuperator)기와 냉각기를 통해 상온으로 냉각시킨 후, 필터를 통해 헬륨을 여과시킨다. 여과된 헬륨은 헬륨순환기에 의해 가압되어 열회수기를 다시 지나 $300^{\circ}C$ 이상으로 가열된다. 가열된 헬륨은 열회수기를 지나지 않는 상온의 헬륨과 혼합되어 최종적으로 HCCR TBM의 입구온도 조건인 $300^{\circ}C$로 맞추어 HCCR TBM에 공급된다. 이러한 열회수기 중심으로 '${\infty}$' 모양의 자가 교차로 설계된 헬륨냉각계통은 고온영역과 저온영역으로 냉각회로를 구분하여 순환기, 필터 및 각종 계측기의 운전온도 환경을 상온으로 유지시킬 수 있어 운전 및 유지보수 관점에서 이점이 있다. HCCR TBM의 헬륨냉각계통 설계 및 핵심 기기를 실증하고, 운전 경험을 쌓기 위하여 헬륨공급장치(HeSS, Helium Supply System)를 헬륨유량기준 1/3 규모(0.5 kg/s)로 구축하였으며, '14년까지 HeSS를 실증규모로 업그레이드 하기 위하여 80기압 환경에서 압축비 1.1, 유량 1.5 kg/s의 성능을 내는 헬륨순환기를 설치할 예정이다. 현재 구축된 1/3 규모 HeSS는 국내 구축된 전자빔 고열부하 시험 장비인 KoHLT-EB (Electron Beam)와 연계되어 HCCR TBM의 일차벽(플라즈마 대향부품)을 검증할 예정이며, 이를 통해 얻어진 열수력 DB는 현재 개발중인 핵융합로 안전해석코드인 GAMMA-FR 검증에 활용될 계획이다.

  • PDF

Preliminary CFD Results of a Dual Bell Nozzle based on the KSLV-II (한국형발사체를 기반으로 한 듀얼 벨 노즐의 전산수치해석 기초 결과)

  • Kim, Jeonghoon;Choi, Junsub;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.18-28
    • /
    • 2016
  • Numerical analysis was conducted as a preliminary study for evaluating the dual bell nozzle. For future parametric studies, a dual bell nozzle was designed, and thereafter inlet condition, turbulence model, and the number of optimum grids were determined. Dual bell nozzle was designed based on the KSLV-II first stage nozzle. Inlet condition was determined to frozen flow model of non-reacting eight species by comparing with the design values. SST $k-{\omega}$ model turned out to be suitable as turbulence model. About 150 thousand of the grids were selected after grid sensitivity tests. Based on the results determined in this study, we plan to investigate performance gain of the KSLV-II by adopting a proposed dual bell nozzle.

Analysis of Flow Characteristic and Optimum Design for Subminiature Pressure Reducer Under High Pressure (고압 적용용 초소형 감압기 설계를 위한 유동 해석 및 최적 설계)

  • Lee, WonJun;Baek, JongTae;Yun, Rin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.497-503
    • /
    • 2017
  • A theoretical study on oxygen flow is fundamental to comprehend the practical production of an oxygen respirator and its stability. In this study, an orifice-type pressure-reducing component was designed for the newly developed oxygen respirator, using the commercial CFD tool, COMSOL Multiphysics, which increases its operational time compared to the existing component. The orifice was optimized by changing the length by 3, 6, and 9 mm within the entire computational domain of the oxygen respirator. Based on an oxygen flow rate of 0.028 kg/s, the oxygen respirator equipped with the newly developed orifice satisfied the flow rate within 33% for a respirator inlet pressure of 300 bar, and within 32.7% for 50, 75, and 100 bar. In terms of component manufacturing, the orifice length was selected as 3 mm, which removes additional changes to the existing component.

Study on Cooling Performance Characteristics of Air Conditioning System Using R744 for a Passenger Vehicle (이산화탄소를 적용한 승용자동차 냉방시스템의 성능특성에 관한 연구)

  • Lee, Ho-Seong;Cho, Chung-Won;Won, Jong-Phil;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5457-5463
    • /
    • 2011
  • The objective of this study is to investigate cooling performance characteristics of mobile air conditioning system using R744 as an alternative of R-134a. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a passenger vehicle, the developed air conditioning system using R744 was applied in a real passenger vehicle and tested under various operating conditions with the variation of gas-cooler inlet air conditions, evaporator inlet air temperatures and compressor speeds. As a result, cooling capacity and coefficient of performance (COP) of the tested air conditioning system decreased with the rise of the inlet air temperature of the gas cooler but increased with the rise of the inlet air temperature of the evaporator. In addition, cooling capacity and coefficient of performance (COP) increased by 42.2 % with the rise of the compressor speed from 900 rev/min to 1800 rev/min, but it decreased by 55.4%.

Temperature Variation of Exhaust Gas in Diesel Generator for Low Pressure SCR (저압 SCR을 위한 디젤발전기 배기가스 온도 변화)

  • Hong, Chul Hyun;Lee, Chang Min;Lee, Sang Duk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.355-362
    • /
    • 2021
  • To facilitate low-pressure selective catalyst reduction (L.P SCR), a high exhaust-gas temperature of a four-stroke diesel engine for a ship's generator is required. This study aimed at reducing the exhaust-gas temperature by adjusting the valve open-close timing and fuel injection timing to satisfy the operating conditions of L.P SCR and prevent accidents associated with the generator engine due to high temperature. To lower exhaust-gas temperature, the angle of the camshaft was adjusted and the shim of the fuel injection pump was added. As a result, the maximum explosion pressure increased and the average of the turbocharger outlet temperature dropped. Considering the heat loss from the turbocharger outlet to the SCR inlet, the operation condition for L.P SCR was satisfied with 290 ℃. The study demonstrates that safe operation of a diesel generator can be achieved by lowering the exhaust-gas temperature.

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF

Study on Heat Transfer Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Heating Operating Condition (난방운전 조건하에서 $CO_2$ 열펌프용 내부 열교환기의 열전달 특성에 대한 연구)

  • Kim, Dae-Hoon;Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • In order to study the heat transfer, effectiveness and pressure drop of an internal heat exchanger (IHX) for $CO_2$, heat pump under heating condition, the experiment and numerical analysis were performed. Four kinds of IHXs were used. The section-by-section method and Hardy-Cross method were used for the numerical analysis. The effects of IHX on the flow rate of refrigerant, the IHX length, the operating condition of a gas-cooler and an evaporator and the type of IHXs were investigated. With increasing the flow rate, the heat transfer rate increased about 25%. The heat transfer of the micro-channel tube was larger about 100% than that of the coaxial tube. With increasing the IHX length, the heat transfer rate decreased. The low-side pressure drop was larger compared with that of the high-side. And the pressure drop of the microchannel tube was larger about 100% than that of the coaxial tube. With increasing the high-side temperature and decreasing the low-side temperature, the heat transfer rate increased about 3%. From this study, we can see that new correlation on $CO_2$ heat transfer characteristics and tube type is necessary.

Study on Performance and Optimal Operating Conditions of Regenerative Steam-Injection Gas Turbine Systems (증기분사 재생 가스터빈 시스템의 성능 및 최적 운전조건에 관한 연구)

  • Kim, Kyoung-Hoon;Kim, Dong-Joo;Park, Sang-Hee;Oh, Man-Soo;Kim, Dong-Myoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.29-39
    • /
    • 2010
  • The system performance of the regenerative gas-turbine cycle with the steam injection into the combustor has been studied through the thermodynamic cyclic analysis. The effects of the pressure ratio, the steam injection ratio, the ambient temperature, and the turbine inlet temperature are investigated on the thermal efficiency, the fuel consumption, and the specific power as well as the operating conditions for the maximum thermal efficiency of the system. The results of the present analysis find that the use of steam injection in the regenerative gas-turbine system can greatly enhance the thermal efficiency and the specific power of the system.