• Title/Summary/Keyword: 입구가이드베인

Search Result 14, Processing Time 0.018 seconds

Development of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 개발)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.3
    • /
    • pp.314-321
    • /
    • 2020
  • In this work, a preliminary design of an inlet guide vane and runner for developing a 2.5 kW hydraulic turbine was conducted by using computational fluid dynamic analysis. Three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used to analyze the fluid flow in the hydraulic turbine. The hexahedral grid system was used to construct computational domain, and the grid dependency test was performed to obtain the optimal grid system. Velocity triangle diagram considering the flow angles of the inlet guide vane and runner was analyzed to obtain a basic geometry of the inlet guide vane and runner. Through modification of the preliminary design, the hydraulic performances of the turbine have improved under overall drop conditions. Especially, the efficiency and power of the turbine increased by 0.95% and 1.45%, respectively, compared to those of the reference model.

Effect of air inflow on the performance of a 50kW-class cross-flow turbine (50kW급 횡류수차 내 공기 유입이 성능에 미치는 영향)

  • Kim, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.418-423
    • /
    • 2014
  • Small hydropower has been considered as a solution to resolve the problem of exhaustion of fossil fuel and industrial pollution. In this study, we developed and tested a Cross-Flow Turbine with two guide vanes to optimize the small hydropower for the site condition with large fluctuation of head and flow rate. Furthermore, in the condition of constant inlet head, CFD analysis was carried out to analyze the effect of air suction and valve position on the performance characteristics. The results showed that the air suction can minimize the hydraulic loss caused by the Recirculation flow in the runner passage and flow impact on main shaft so that it can increase the turbine efficiency and output power.

Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

A Numerical Study on an Optimum Design of a Hybrid Collector Coupled with the Principle of Cyclone, Baffle and Bag-Filter (싸이클론과 배플 및 백필터 원리를 결합한 하이브리드형 집진기의 최적화 설계를 위한 수치해석)

  • Hong, Sung-Gil;Jung, Yu-Jin;Lim, Ki-Hyuk;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.983-989
    • /
    • 2013
  • The current research reviewed the design conditions that would maximize the efficiency of the hybrid collector that combines in one unit "cyclone-inertial impaction-bag filter". The computational analysis for the shape of cyclone entry predicts that a design that installs the guide vane at the entry of the tangential type cyclone brings a high-rpm and powerful vortex, very effective in promoting the deflection of coarse particles from the streamline at the cyclone. As the lower part of the cyclone is venturi-shaped, however, a strong flow downward of 4 to 5 m/sec persists through the lower part of the hopper, revealing the likely reentrainment of collected dust. And the removal of the venturi at the lower part of the cyclone would solve the problem of the reentrainment of collected dust. The acceleration of the flow velocity through the adjustment of the gap of the collision baffle would increase the effect of collision, but as the interference with the dust separation is expected, the original design should be kept for the baffle.