• Title/Summary/Keyword: 임 계면

Search Result 109, Processing Time 0.028 seconds

Direct Growth of CNT on Cu Foils for Conductivity Enhancement and Their Field Emission Property Characterization (전도성 향상을 위한 구리호일 위 CNT의 직접성장 및 전계방출 특성 평가)

  • Kim, J.J.;Lim, S.T.;Kim, G.H.;Jeong, G.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.155-163
    • /
    • 2011
  • Carbon nanotubes (CNT) have been attracted much attention since they have been expected to be used in various areas by virtue of their outstanding physical, electrical, and chemical properties. In order to make full use of their prominent electric conductivity in some areas such as electron emission sources, device interconnects, and electrodes in energy storage devices, direct growth of CNT with vertical alignment is definitely beneficial issue because they can maintain mechanical stability and high conductivity at the interface between substrates. Here, we report direct growth of vertically aligned CNT (VCNT) on Cu foils using thermal chemical vapor deposition and characterize the field emission property of the VCNT. The VCNT's height was controlled by changing the growth temperature, growth time, and catalytic layer thickness. Optimum growth condition was found to be $800^{\circ}C$ for 20 min with acetylene and hydrogen mixtures on Fe catalytic layer of 1 nm thick. The diameter of VCNT grown was smaller than that of usual multi walled CNT. Based on the result of field emission characterization, we concluded that the VCNT on Cu foils can be useful in various potential applications where high conductivity through the interface between CNT and substrate is required.

Investigation of Nonylphenols Contamination in Solvents and Solid-phase Extraction Cartridge, and its Removal Protocols (정밀분석용 용매 및 SPE의 Nonylphenols 오염평가 및 제거)

  • Park, Jong-Min;Choi, Geun-Hyonng;Kim, Jung-Im;Hong, Su-Myeong;Kwon, Oh-Kyung;Im, Geon-Jae;Kim, Jin-Hyo
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.22-27
    • /
    • 2011
  • Nonylphenols are toxic compounds classified as endocrine disruptors. We investigated the nonylphenols clean-up procedures for the contamination control in the quantitative analysis. In this research we analyzed the residual nonylphenols in the solvent and the SPE cartridges. First, at the analysis of HPLC grade solvents (n-hexane, diethyl ether, ethyl acetate and its mixture), diethyl ether was confirmed the residue as 0.963 ${\mu}g/mL$, and we eliminated the contaminant through the distillation with $CaH_2$, Second, at the analysis of SPE cartridges (silica gel and Florisil), all products were showed the residue at 0.046~13.0 ${\mu}g/mL$, but unfortunately the residue in the cartridge were not easily removed with referenced methods in all tested SPE cartridges except in silica gel SPE cartridge with glass ware.

Thermal Behavior and Crystallographic Characteristics of an Epitaxial C49-$TiSi_2$ Phase Formed in the Si (001) Substrate by $N_2$Treatment (Si (001) 기판에서 $N_2$처리에 의해 형성된 에피택셜 C49-$TiSi_2$상의 열적 거동과 결정학적 특성에 관한 연구)

  • Yang, Jun-Mo;Lee, Wan-Gyu;Park, Tae-Soo;Lee, Tae-Kwon;Kim, Joong-Jung;Kim, Weon;Kim, Ho-Joung;Park, Ju-Chul;Lee, Soun-Young
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • The thermal behavior and the crystallographic characteristics of an epitaxial $C49-TiSi_2$ island formed in a Si (001) substrate by $N_2$, treatment were investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found from the analyzed results that the epitaxial $C49-TiSi_2$ was thermally stable even at high temperature of $1000^{\circ}C$ therefore did not transform into the C54-stable phase and did not deform morphologically. HRTEM results clearly showed that the epitaxial $TiSi_2$ phase and Si have the orientation relationship of (060)[001]$TiSi_2$//(002)[110]Si, and the lattice strain energy at the interface was mostly relaxed by the formation of misfit dislocations. Furthermore, the mechanism on the formation of the epitaxial $_C49-TiSi2$ in Si and stacking faults lying on the (020) plane of the C49 Phase were discussed through the analysis of the HRTEM image and the atomic modeling.

  • PDF

Electrochemical Behavior of Cathode Catalyst Layers Prepared with Propylene Glycol-based Nafion Ionomer Dispersion for PEMFC (프로필렌글리콜에 분산된 나피온 이오노머로 제조된 공기극 촉매층의 연료전지 성능 특성 연구)

  • Woo, Seunghee;Yang, Tae-Hyun;Park, Seok-Hee;Yim, Sung-Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.512-518
    • /
    • 2019
  • To develop a membrane electrode assembly (MEA) with lower Pt loading and higher performance in proton exchange membrane fuel cells (PEMFCs), it is an important research issue to understand interfacial structure of Pt/C catalyst and ionomer and design the catalyst layer structure. In this study, we prepared short-side-chain Nafion-based ionomer dispersion using propylene glycol (PG) as a solvent instead of water which is commonly used as a solvent for commercially available ionomers. Cathode catalyst layers with different ionomer content from 20 to 35 wt% were prepared using the ionomer dispersion for the fabrication of four different MEAs, and their fuel cell performance was evaluated. As the ionomer content increased to 35 wt%, the performance of the prepared MEAs increased proportionally, unlike the commercially available water-based ionomer, which exhibited an optimum at about 25 wt%. Small size micelles and slow evaporation of PG in the ionomer dispersion were effective in proton transfer by inducing the formation of a uniformly structured catalyst layer, but the low oxygen permeability problem of the PG-based ionomer film should be resolved to improve the MEA performance.

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

Purification of Complement System-Activating Polysaccharide from Hot Water Extract of Young Stems of Cinnamomum cassia Blume (계지(桂枝) 열수추출물로부터 보체계 활성화 다당의 정제)

  • Kweon, Mee-Hyang;An, Hyun-Jung;Shin, Kwang-Soon;Na, Gyeong-Su;Sung, Ha-Chin;Yang, Han-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • A complement system-activating (anti-complementary) polysaccharide was purified from the hot water extract of young stems of Cinnamomum cassia Blume. Crude polysaccharide fraction (CC-1) was prepared from the hot water extract of the young stems followed by methanol-reflux, precipitation with ethanol, dialysis, and lyophilization. The anti-complementary activity of CC-1 was decreased greatly by periodate oxidation, but was not changed by pronase digestion. These suggest that carbohydrate moiety may be related to the activation of complement system. According to its ionic strength CC-1 was fractionated first using cetavlon to give 4 fractions, CC-2, 3, 4 and 5. Among them CC-2 fraction was found to retain the highest activity and yield. CC-2 was separated to an unabsorbed neutral sugar portion (CC-2-I) and seven absorbed acidic sugar fractions $(CC-2-II{\rightarrow}CC-2-VIII)$ on DEAE-Toyopearl 650C (Cl-). CC-2-III showing higher anti-complementary activity and yield than those of other fractions, was further purified on the gel permeation of Sephadex G-100 and Sepharose CL-6B to CC-2-IIIa-3. CC-2-IIIa-3 was determined to have a homogeneity hy GPC (Sepharose CL-6B) and HPLC. Gel chromatography using standard dextrans gave a value of $2.4{\times}10^5$ for the molecular weight. The purified polysaccharide, CC-2-IIIa-3 consisted of arabinose, xylose, glucose, galactose, galacturonic acid and glucuronic acid in a molar ratio of 5.56 : 3.77 : 1.87 : 1.00 : 5.12 : 3.13 and contained no nitrogen.

  • PDF

Structural properties and optical studies of two-dimensional electron gas in Al0.55Ga0.45/GaN heterostructures with low-temperature AlN interlayer (저온 성장 AlN 층이 삽입된 Al0.55Ga0.45N/AlN/GaN 이종접합 구조의 구조적 특성 및 이차원 전자가스의 광학적 특성)

  • Kwack, H.S.;Lee, K.S.;Kim, H.J.;Yoon, E.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • We have investigated the characteristics of $Al_{0.55}Ga_{0.45}N$/GaN heterostructures with and without low-temperature (LT) AlN interlayer grown by metalorganic chemical vapor deposition. The structural and optical properties were systematically studied by Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), optical microscopy (OMS), scanning electron microscopy (SEM), and photoluminescence (PL). The Al content (x) of 55% and the structural properties of $Al_xGa_{1-x}N$/GaN heterostructures were investigated by using RBS and XRD, respectively. We carried out OMS and SEM experiments and obtained a decrease of the crack network in $Al_{0.55}Ga_{0.45}N$ layer with LT-AlN interlayer. A two-dimensional electron gas (2DEG)-related PL peak located at ${\sim}3.437eV$ was observed at 10 K for $Al_{0.55}Ga_{0.45}N$/GaN with LT-AlN interlayer. The 2DEG-related emission intensity gradually decreased with increasing temperature and disappeared at temperatures around 100 K. In addition, with increasing the excitation power above 3.0 mW, two 2DEG-related PL peaks were observed at ${\sim}3.411$ and ${\sim}3.437eV$. The observed lower-energy and higher-energy side 2DEG peaks were attributed to the transitions from the sub-band level and the Fermi energy level of 2DEG at the AlGaN/LT-AlN/GaN heterointerface, respectively.

Characterization of an Antarctic alkaline protease, a cold-active enzyme for laundry detergents (세탁세제 첨가용 효소 개발을 위한 남극 해양세균 유래 저온성 단백질분해효소의 특성 연구)

  • Park, Ha Ju;Han, Se Jong;Yim, Joung Han;Kim, Dockyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • A cold-active and alkaline serine protease (Pro21717) was partially purified from the Antarctic marine bacterium Pseudoalteromonas arctica PAMC 21717. On a zymogram gel containing skim milk, Pro21717 produced two distinct clear-zones of approximately 37 kDa (low intensity) and 74 kDa (high intensity). These were found to have identical N-terminal sequences, suggesting they arose from an identical precursor and that the 37 kDa protease might homodimerize to the more active 74 kDa form of the protein. Pro21717 displayed proteolytic activity at $0-40^{\circ}C$ (optimal temperature of $40^{\circ}C$) and maintained this activity at pH 5.0-10.0 (optimal pH of 9.0). Notably, relative activities of 30% and 45% were observed at $0^{\circ}C$ and $10^{\circ}C$, respectively, in comparison to the 100% activity observed at $40^{\circ}C$, and this enzyme showed a broad substrate range against synthetic peptides with a preference for proline in the cleavage reaction. Pro21717 activity was enhanced by $Cu^{2+}$ and remained stable in the presence of detergent surfactants (linear alkylbenzene sulfonate and sodium dodecyl sulfate) and other chemical components ($Na_2SO_4$ and metal ions, such as $Ba^{2+}$, $Mg^{2+}$, $Ca^{2+}$, $Zn^{2+}$, $Fe^{2+}$, $K^+$, and $Na^{2+}$), which are often included in commercial detergent formulations. These data indicate that the psychrophilic Pro21717 has properties comparable to the well-characterized mesophilic subtilisin Carlsberg, which is commercially produced by Novozymes as the trademark Alcalase. Thus it has the potential to be used as a new additive enzyme in laundry detergents that must work well in cold tap water below $15^{\circ}C$.

Development of Lateral Flow Immunofluorescence Assay Applicable to Lung Cancer (폐암 진단에 적용 가능한 측면 유동 면역 형광 분석법 개발)

  • Supianto, Mulya;Lim, Jungmin;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.173-178
    • /
    • 2022
  • A lateral flow immunoassay (LFIA) method using carbon nanodot@silica as a signaling material was developed for analyzing the concentration of retinol-binding protein 4 (RBP4), one of the lung cancer biomarkers. Instead of antibodies mainly used as bioreceptors in nitrocellulose membranes in LFIA for protein detection, aptamers that are more economical, easy to store for a long time, and have strong affinities toward specific target proteins were used. A 5' terminal of biotin-modified aptamer specific to RBP4 was first reacted with neutravidin followed by spraying the mixture on the membrane in order to immobilize the aptamer in a porous membrane by the strong binding affinity between biotin and neutravidin. Carbon nanodot@silica nanoparticles with blue fluorescent signal covalently conjugated to the RBP4 antibody, and RBP4 were injected in a lateral flow manner on to the surface bound aptamer to form a sandwich complex. Surfactant concentrations, ionic strength, and additional blocking reagents were added to the running buffer solution to optimize the fluorescent signal off from the sandwich complex which was correlated to the concentration of RBP4. A 10 mM Tris (pH 7.4) running buffer containing 150 mM NaCl and 0.05% Tween-20 with 0.6 M ethanolamine as a blocking agent showed the optimum assay condition for carbon nanodot@silica-based LFIA. The results indicate that an aptamer, more economical and easier to store for a long time can be used as an alternative immobilizing probe for antibody in a LFIA device which can be used as a point-of-care diagnosis kit for lung cancer diseases.