• Title/Summary/Keyword: 임펠러설계

Search Result 148, Processing Time 0.025 seconds

Optimum Design of a Cross Flow Fan (횡류팬의 최적설계방안)

  • Kim Dong-Hoon;Park Hyung-Koo
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.50-57
    • /
    • 2003
  • Cross-flow fans are widely used in various applications, due to their large capacity of mass flow and size compactness. The flow field of the cross-flow fan is, however, complex and has many design parameters. Thus, the general design guide has not been sufficiently established yet and the design strategies of cross-flow fans have been mostly based on experiments. In the present study, the performance and their two-dimensional flow characteristics are numerically analyzed by using the STAR-CD(commercial computational fluid dynamics code). The simulation is done by varying the several design parameters such as the impeller blade shapes and the gap between the stabilizer and impeller. The computational results are compared with the experimental data at the fan outlet region. Finally, some helpful guides for the optimum design of cross-flow fans are proposed.

Development of the Centrifugal Compressor for a R134a Turbo-Chiller Part 1 : Design of the Centrifugal Compressor (R134a용 터보냉동기의 원심압축기 개발 Part 1 : 원심압축기 설계)

  • Lee, Yongduck;Jeong, Jinhee;Lee, Hyeonkoo;Yoon, Pil-Hyun;Kim, Kilyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.44-51
    • /
    • 2000
  • The present study has been conducted to design the high efficiency centrifugal compressor for a R134a turbo-chiller. The centrifugal compressor consists of an impeller with splitters, two vaneless diffusers, a low-solidity vaned diffuser and a volute. A cycle analysis program for a turbo-chiller was developed to obtain compressor design parameters and requirements. We have designed the high efficiency centrifugal compressor by applying the repeated design procedure including a meanline design, a 3D geometry generation and fluid dynamic loading calculations.

  • PDF

Impeller Redesign of Multi-stage Centrifugal Pumps (다단 원심펌프 임펠러의 개량 수력설계)

  • Oh, JongSik;Kim, DongSoo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.177-184
    • /
    • 2001
  • For two kinds of the multi-stage centrifugal pump with diffuser vanes and return channel vanes the meanline performance prediction is applied to get information of hydraulic performance at each internal flow station, because only flange-to-flange test curves are available. As a first step of redesign fur higher efficiency, the impeller geometry is numerically investigated in the present study. Quasi-3D inviscid loading distributions are obtained, for the two impellers, using the state-of-the-art method of impeller 3D design, which provides a guide to optimal redesign. Full 3D turbulent flow fields are thereafter analyzed, using the specialized CFD code, to confirm the redesign results. The inherent limitation of the traditional graphic method of impeller design, which most of domestic pump manufacturers are now employing, is found.

  • PDF

Flow Evaluations of Centrifugal Pump Impeller Using Commercial Code (상용코드를 이용한 원심펌프 임펠러 유동평가)

  • Shim, Chang-Yeul;Hong, Soon-Sam;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.285-292
    • /
    • 2000
  • Numerical calculation is applied to centrifugal pump at design condition by using commercial code STAR-CD and Tascflow, and these results are compared with experimental data at impeller outlet. Numerical analysis is also performed by changing turbulence model and discretization scheme at design condition using Tascflow. Turbulence model and discretization scheme used to Tascflow are k-$\epsilon$, k-$\omega$ turbulence model and upwind, modified linear profile scheme. W;th the same turbulence model and discretization scheme, two results of STAR-CD and Tascflow are very similar. But there is significant difference in numerical results near hub and shroud of impeller with different kinds of turbulent model and discretization scheme at design condition. And with k- $\omega$ turbulence model and modified linear profile scheme, it is showed that numerical results are very similar to experimental results of impeller outlet

  • PDF

Design Program of impellers of Vacuum Cleaner (진공청소기 임펠러 설계 프로그램)

  • Ahn, K.-W.;Lee, S.;Baek, S.-J.;Kim, C.-J.;Jeon, W.-H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.54-60
    • /
    • 2001
  • In this research, we developed a computer code that designs a compressor impeller, which serves as an essential component of a vacuum cleaner, and predicted its performance. The TEIS model originally developed by Japikse(1985), and the mean line analysis m combined to design the centrifugal impeller optimally. In this program the inlet geometry is designed by using the mean line analysis, and with assumption of resonable exit blade angle, the optimal geometry is searched by means of TEIS model and iterative scheme. The performance of designed impeller was compared with experimental data, and the far-field noise by the rotating impeller is also predicted.

  • PDF

OPTIMIZATION OF A CENTRIFUGAL COMPRESSOR IMPELLER AND DIFFUSER USING A RESPONSE SURFACE METHOD (반응면기법을 이용한 원심압축기 최적설계)

  • Kim, S.M.;Park, J.Y.;Ahn, K.Y.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.92-99
    • /
    • 2007
  • In this paper, optimization of the vaned centrifugal compressor was carried out at a given mass flow rate condition. Firstly, impeller optimization was conducted using response surface method (RSM) which is one of optimization methods. After the optimization of the impeller was completed, diffuser optimization was performed with the optimized impeller. In these processes, Navier-Stokes solver was used to calculate the flow inside the centrifugal compressor. And the optimization is performed with Box-Behnken design method which is efficient for fitting second-order response surfaces to reduce the number of calculations required. As a result, compared with the reference model, the efficiency and the pressure ratio of the optimized impeller and diffuser are found to be increased. The performance at off-design conditions is presented.

  • PDF

A STUDY ON IMPROVED DESIGN OF SMALL SIZE TURBO-COMPRESSOR USING COMPUTATIONAL FLUID ANALYSIS (유동해석을 통한 소형 터보압축기 성능 개선 설계에 관한 연구)

  • Kim, Seung-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.142-146
    • /
    • 2010
  • This study presents the design of small size turbo-compressor to increase the performance using computational fluid analysis. A three dimensional computation was conducted changing the main parameters of impeller blade and diffuser shape, respectively, and the design was performed on a basis analysis of result of that. As a result, the Improved shapes show the increase of efficiency in comparison with the existing shape. This study will be used as useful reference data to establish the design concept of the small size turbo-compressor and to improve its performance.

  • PDF

A Study on the Impeller Design of a Submerged Cryogenic Pump (초저온 산업용 액중펌프 임펠러 설계에 관한 연구)

  • Kweon, Byung Soo;Lee, Chi-Woo;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.136-141
    • /
    • 2016
  • The purpose of this study is to examine the basic design of a submerged cryogenic pump, which is a two stage impeller pump. We limited this study to the impeller design of the submerged pump. We calculated its velocity triangle based on the impeller blade configuration and, in order to check its natural frequency, we carried out a modal test using a finite element method (FEM) analysis. Basically, modal test results had quite similar to FEM analysis.

A Study on a Perfomance Analysis of the Centrifugal Pump Impeller using CFD (CFD에 의한 원심펌프 임펠러 성능해석에 관한 연구)

  • 남구만;모장오;강신정;임효남;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.89-94
    • /
    • 2002
  • A commercial CFD code is used to calculate the 3-D viscous flow field within the centrifugal pump impeller. Design conditions are changed by impeller inlet(9.3mm, 12.2mm) and outlet breadth(6.65mm, 6.85mm). Numerical calculation was performed by changing flow rate from 8 to 26m$^{3}$/hr. Computation results shows that total head is increased at the larger inlet and outlet breadth than the others. And when the flow rate is increasing, the total head was decreased. The maximum efficiency of pump is shown at the design flow rate(16m$^{3}$/hr). In this study shows that the calculated results are good agreements with analysis results of design condition.

  • PDF

Design of Impeller and Diffuser for Mixed Flow Pump with Inverse Design Method (역설계 방법을 적용한 사류펌프의 임펠러 및 디퓨저 설계)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Kim, Jun-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1322-1325
    • /
    • 2009
  • The impeller and vane diffuser for the mixed flow pump(NS550) was designed by using meridional selection program and inverse design method. We decided the meridional shape of the impeller from the meridional design parameter, such as the specific speed and maximum diameter at the impeller exit. The meridional shape of vane diffuser was set from the impeller shape, distribution of cross sectional area and maximum diffuser diameter. The angle of impeller blade and diffuser vane was designed by using inverse design method. The predicted overall performance by using commercial CFD code(ANSYS CFX-11) shown good agreement with design goals.

  • PDF