표본기반 초해상도(Super Resolution 이하 SR) 기법은 데이터베이스에 저장된 고해상도 영상의 패치와 저해상도 영상의 패치 사이에 대응관계를 이용하여, 저해상도의 입력영상에 가장 유사한 고해상도 패치를 덧붙여서 고해상도를 구성하는 방식이다. 이러한 방식은 한 장의 영상만으로 고해상도 영상을 얻을 수 있고, 위의 과정을 반복하여 2배 이상의 확대된 영상을 얻을 수 있어서 기존의 고전적 SR의 문제점을 해결할 수 있다. 표본기반 SR의 방법들 중 네이버 임베딩(Neighbor Embedding 이하 NE) 기법의 기본 원리는 지역적 선형 임베딩이라는 매니폴드 학습방법의 개념과 같다. 그러나 네이버 임베딩의 빈약한 일반화 능력으로 인하여 알고리즘의 성능을 크게 저하시킨다. 이유는 국부학습 데이터 집합의 크기가 너무 작아서 NE 알고리즘의 성능을 현저히 저하시킨다. 본 논문에서는 이와 같은 문제점을 해결하기 위해서 일반화 능력이 뛰어난 Support Vector Regression(이하 SVR)기반 개선된 NE를 제안하였다. 저해상도 입력 패치가 주어지면 SVR 기반 개선된 NE를 이용하여 고해상도의 해당 화소 값을 예측하였다. 실험을 통하여 제안된 기법이 기존의 보간법 및 NE 기법 등에 비해 정량적인 척도 및 시각적으로 향상된 결과를 보여 주었다.
의미역 결정은 문장 속에서 서술어와 그 논항의 관계를 파악하며, '누가, 무엇을, 어떻게, 왜' 등과 같은 의미역 관계를 찾아내는 자연어 처리 기법이다. 최근 수행되고 있는 의미역 결정 연구는 주로 말뭉치를 활용하여 딥러닝 학습을 하는 방식으로 연구가 이루어지고 있다. 최근 구글에서 개발한 사전 훈련된 Bidirectional Encoder Representations from Transformers (BERT) 모델이 다양한 자연어 처리 분야에서 상당히 높은 성능을 보이고 있다. 본 논문에서는 한국어 의미역 결정 성능 향상을 위해 한국어의 언어적 특징을 고려하며 사전 학습된 SNU KR-BERT를 사용하면서 한국어 의미역 결정 모델의 성능을 살펴보였다. 또한, 본 논문에서는 BERT 모델에서 과연 어떤 히든 레이어(hidden layer)에서 한국어 의미역 결정을 더 잘 수행하는지 알아보고자 하였다. 실험 결과 마지막 히든 레이어 임베딩을 활용하였을 때, 언어 모델의 성능은 66.4% 였다. 히든 레이어 별 언어 모델 성능을 비교한 결과, 마지막 4개의 히든 레이어를 이었을 때(concatenated), 언어 모델의 성능은 67.9% 이였으며, 11번째 히든 레이어를 사용했을 때는 68.1% 이였다. 즉, 마지막 히든 레이어를 선택했을 때보다 더 성능이 좋았다는 것을 알 수 있었다. 하지만 각 언어 모델 별 히트맵을 그려보았을 때는 마지막 히든 레이어 임베딩을 활용한 언어 모델이 더 정확히 의미역 판단을 한다는 것을 알 수 있었다.
법률 전문 지식이 없는 사람들이 법률 정보 검색을 성공적으로 하기 위해서는 일반 용어를 검색하더라도 전문 용어가 사용된 법령정보가 검색되어야 한다. 하지만 현 판례 검색 시스템은 사용자 선호도 검색이 불가능하며, 일반 용어를 사용하여 검색하면 사용자가 원하는 전문 자료를 도출하는 데 어려움이 있다. 이에 본 논문에서는 일반용어가 사용된 질의문과 전문용어가 사용된 판례를 자동으로 연결해 주고자 하였다. 질의문과 연관된 판례를 자동으로 연결해 주기 위해 전문용어가 사용된 전문가 답변을 바탕으로 문서분류에 높은 성능을 보이는 Doc2Vec을 이용한다. Doc2Vec 문서 임베딩 기법을 이용하여 전문용어가 사용된 전문가 답변과 유사한 답변을 제안하여 비슷한 주제의 답변들끼리 분류하였다. 또한 전문가 답변과 유사도가 높은 판례를 제안하여 질의문에 해당하는 판례를 자동으로 연결하였다.
빅데이터 관련 기술이 발달함에 따라 이전에는 처리할 수 없었던 방대한 규모의 데이터를 처리할 수 있게 되었다. 이에 따라 데이터 선정 및 융합 자동화 프로세스 구축은 빅데이터 기반 서비스 구현에 있어 선택이 아닌 필수인 시대가 되었다. 본 논문은 공간 정보를 담고 있는 데이터셋을 융합하여 유의미한 새로운 정보를 생성하기 위한 준자동화 기법을 제안한다. 우선 Node2Vec 모델을 활용하여 주어진 데이터셋의 키워드를 이용해 데이터셋의 임베딩 벡터를 생성한다. 생성된 각 임베딩 벡터를 이용해 코사인 유사도를 계산하여 데이터셋 간의 시멘틱 유사도를 구한다. 이후 사람이 개입하여 그 시멘틱 유사도가 상대적으로 높은 데이터셋 쌍 중에서 공간 정보를 가진 데이터셋을 선별하고, 데이터셋 쌍을 융합하여 시각화한다. 이러한 일련의 준자동 융합 프로세스를 통해 단일 데이터셋으로부터는 얻을 수 없는 유의미한 융합정보를 생성할 수 있음을 보인다.
본 논문에서는 온라인 뉴스 기사에서 자동으로 추출된 키워드 집합을 활용하여 특정 시점에서의 세부 주제별 토픽을 추출하고 정형화하는 새로운 방법론을 제시한다. 이를 위해서, 우선 다량의 텍스트 집합에 존재하는 개별 단어들의 중요도를 측정할 수 있는 복수의 통계적 가중치 모델들에 대한 비교 실험을 통해 TF-IDF 모델을 선정하였고 이를 활용하여 주요 키워드 집합을 추출하였다. 또한 추출된 키워드들 간의 의미적 연관성을 효과적으로 계산하기 위해서 별도로 수집된 약 1,000,000건 규모의 뉴스 기사를 활용하여 단어 임베딩 벡터 집합을 구성하였다. 추출된 개별 키워드들은 임베딩 벡터 형태로 수치화되고 K-평균 알고리즘을 통해 클러스터링 된다. 최종적으로 도출된 각각의 키워드 군집에 대한 정성적인 심층 분석 결과, 대부분의 군집들이 레이블을 쉽게 부여할 수 있을 정도로 충분한 의미적 집중성을 가진 토픽들로 평가되었다.
활동기반 모델은 현대의 복잡한 개인의 통행행태를 반영한 정교한 기반의 수요예측이 가능하지만, 분석 대상지의 상세한 인구정보가 필수적으로 요구된다. 최근 다양한 심층생성 모델을 활용한 합성인구 생성 기법이 개발되었고, 설문조사를 통해 수집된 샘플 데이터에 존재하지 않는 실제 인구와 유사한 인구 특성을 모사한 데이터를 생성해내는 방법론이 제시되었다. 이는 이산형으로 이루어진 샘플 데이터를 연속형 데이터로 변환하여 분포 영역을 정의한 뒤 생성된 표본 데이터의 거리를 정교하게 계산하여, 불가능한 인구 특성 조합을 억제하는 방식으로 데이터의 확률 분포를 학습한다. 하지만 데이터 변환 과정에 활용되는 개체 임베딩이 잘 학습되지 않으면 의도와 다르게 왜곡된 연속형 분포 영역이 정의될 수 있고, 원본 데이터 표현의 오류로 인한 잘못된 합성인구를 생성할 가능성이 존재한다. 따라서 본 연구에서는 정확도 높은 임베딩을 추출하여 간접적으로 합성인구 생성 성능을 증가시키고자 한다. 결과적으로 합성인구의 다양성과 정확성 측면에서 기존 대비 약 28.87% 성능이 향상하였다.
콘텐츠 산업의 꾸준한 성장에 따라 수많은 콘텐츠 중에서 개인의 취향에 적합한 콘텐츠를 자동으로 추천하는 연구의 필요성이 증가하고 있다. 콘텐츠 자동 추천의 정확도를 향상시키기 위해서는 콘텐츠에 대한 사용자의 선호 이력을 바탕으로 하는 기존 추천 기법과 더불어 콘텐츠의 메타데이터 및 콘텐츠 자체에서 추출할 수 있는 특징을 융합한 추천 기법이 필요하다. 본 연구에서는 음악의 소리 데이터로부터 태그 정보를 분류하는 LSTM 기반의 모델을 학습하고 분류된 태그 정보를 음악의 메타 데이터로 추가하여, 그래프 임베딩 시 콘텐츠의 특징까지 고려할 수 있는 KPRN 기반의 새로운 콘텐츠 추천 방법을 제안한다. 카카오 아레나 데이터 기반 실험 결과, 본 연구의 제안 방법은 기존의 임베딩 기반 추천 방법보다 우수한 추천 정확도를 보였다.
스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.
스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.
Culture industry is appearing as an important sector of economy. Many kinds of culture industry like movie, music, drama, animation and game are creating enormous wealth all over the world. Fashion is a kind of culture industry too and even sometimes treated as art. Korean fashion is not treated as real culture but still as a part of textile industry. Internationally Korean fashion has not yet much to show, and despite of it's potential it does not attract much interest from other countries. In this paper properties and effects of mulberry handmade paper clothes were investigated with five clothes made of it. In making handmade mulberry paper clothes various techniques could be applied and these techniques could bring new effects. Because mulberry handmade paper does not have little flexibility than ordinary texture, much efforts should be put to the detail works. Handmade mulberry paper clothes have enormous potential as art, because various approach could be applied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.