영상 정보를 이용한 자동 낙상 감지 알고리즘을 제안한다. 자동으로 낙상을 감지하기 위한 낙상 특징 파라미터를 추출하기 위해서 영상정보를 광류 방식에 적용하여 움직임 값들을 추출하고 이 움직임 값들에 대한 전체적인 변화의 정도와 기울기, 중심점을 주성분 분석 방법으로 계산한다. 계산된 고유값과 고유 벡터를 사용하여 6가지 낙상 특징 파라미터를 정의한다. 이 낙상특징파라미터가 미리 정해둔 임계값을 초과하는 경우를 낙상으로 판단하는 단순 임계치 방법과 낙상특징파라미터를 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용시켜 낙상을 판단하는 방법과 단순임계치와 은닉 마르코프 모델을 결합한 낙상 감지 방법을 제안하고 그 결과를 비교 및 분석한다. 단순 임계치와 은닉 마르코프 모델을 결합한 방법은 단순임계치 방법으로 낙상 가능한 행동들을 결정하고 이 결정된 낙상 행동들만을 은닉 마르코프 모델을 적용하여 낙상을 감지한다. 이 방법은 계산량을 줄이면서 감지 정확도를 유지하는 결과를 보인다.
장면 전환 검출은 비디오 데이터의 효율적인 관리를 위한 주요 기술로서 다양한 영상에 실제적으로 적용하기 위해서 적응적인 검출 기술이 요구된다. 본 논문에서는 가변 참조 구간의 평균 특징값을 이용한 적응적인 장면 전환 검출 알고리즘을 제안한다. 제안하는 알고리즘은 비디오 프레임에서 추출한 특징값들 중에서 가변 구간 동안의 평균 특징값을 참조하여 적응적 임계값을 정의하고, 특징값과 임계값을 비교하여 장면 전환 유무를 판단한다. 동일한 비디오 데이터를 사용한 실험을 통해서 제안한 방법이 기존의 방법들보다 검출 결과가 최대 15%이상 향상되었음을 확인하였다. 제안한 방법은 여러 가지 특징 추출 방법에 대해서도 좋은 성능을 나타내었으며, 홈캐스트사의 TVUS 모델에서 구현함으로써 하드웨어 성능이 낮은 플랫폼에서 실시간 장면 전환 검출이 가능한 것을 확인하였다. 따라서 제안하는 방법은 휴대용 미디어 장치나 유사 휴대형기기에서 유용하게 사용될 수 있을 것이다.
본 논문에서는 사전과 시소러스를 이용하여 문장음성 이해를 위한 확률모델을 제안한다. 제안한 확률모델은 입력되는 음성과 텍스트 문장에서 단어를 추출한다. 컴퓨터가 선택한 카테고리의 사전 DB와 입력된 문장에서 추출된 단어와 비교하고 확률모델로부터 확률값을 얻는다. 이때 컴퓨터로부터 상위어 정보를 알아내고 상위어 사전을 검색하여 단어를 추출하고 입력된 단어와 확률 모델을 비교하여 결과값을 얻는다. 사전과 상위어 사전으로부터 얻은 두개의 확률값을 더하고 그 값을 미리 정해진 임계값과 비교하여 문장의 이해도를 측정한다. 이와 같은 이해 시스템을 스무고개 게임에 적용시켜 그 성능을 평가 하였다. 상위어 확률 값($\alpha$)이 0.9이고 임계값 ($\beta$)은 0.38일 때 문장음성 이해의 정확도는 79.8%였다.
멀티레벨 잉크젯 프린터는 다양한 도트 크기 및 다른 농도를 가진 잉크를 사용함으로써 뛰어난 색재현과 부드러운 계조를 표현할 수 있다. 이에 멀티토닝 기법에 관한 많은 연구 노력들이 더 나은 영상 화질을 위해 진행되고 있다. 하지만 멀티토닝은 프린터가 출력할 수 있는 레벨에서 일정 구간 같은 잉크가 찍히는 banding artifact가 발생한다. 이는 특히 부드러운 계조 변화 영역에서 불연속성이나 시각적으로 좋지 않은 결과를 낳게 된다. 따라서 이러한 banding artifact를 줄이기 위하여 본 논문에서는 개선된 임계값 배율 조정함수를 이용하여 프린터 출력 레벨에서 이웃 출력 잉크의 혼합 비율을 제어함으로써 잉크 분포를 조절하는 멀티토닝 방법을 제안한다. Banding artifact가 발생하는 영역에서의 잉크 분포는 이웃 출력 잉크의 혼합 시점을 조절하는 임계값 배율 조정 함수의 두 인자에 의해 달라진다. 따라서 8명의 관찰자를 이용하여 여러 가지 인자 값에 대한 프린터 출력 레벨에서의 잉크 분포를 조사하였다. 그 결과, 특정 인자 값을 가진 임계값 배율 조정 함수를 사용함으로써 시각적으로 부드러운 계조 변화를 표현할 수 있었다. 실험에서는 제안한 방법을 칼라와 회색조 ramp 영상에 적용하여 banding artifact 감소와 색재현성에서의 더 나은 성능을 확인하였다.
본 연구에서는 토지적성평가 평가결과의 정확성을 향상시킬 수 있는 방안을 제시하였다. 이를 위해 지표값 측정 및 임계치 설정을 중심으로 현 제도에서 적용하고 있는 평가방법과 이를 개선할 수 있는 방안을 검토하고, 사례지역을 대상으로 두 가지 방법을 적용함으로써 기존의 방법에 비해 지니는 효과를 파악하였다. 구체적인 분석과정은 1) 공간적 입지특성에 대한 거리측정시 저항을 고려한 분석, 2) 보전적성값 산정시 물리적 특성지표에 적용되는 귀속도 함수의 임계치 설정에 따른 평가결과를 측정하였다. 평가결과 첫째, 저항을 고려한 측정방법이 단순한 직선거리에 의한 방법에 비해 하천이나 임야 등 접근성이 떨어지는 지역적 특성을 보다 잘 반영하고 있는 것으로 나타났다. 둘째, 대상지역의 최고값을 최대임계치로 설정하는 현재의 방법이 지표의 측정값 분포를 고려한 임계치 설정 때보다 상대적으로 평가절하된 점수값을 도출할 수 있음을 예측할 수 있었다. 마지막으로 인공위성영상자료를 평가결과에 중첩시켜 보았을 때 본 연구의 방법에 의한 적성등급이 현황과 보다 잘 부합하는 것으로 나타났다. 본 연구에서 제시한 평가방법은 토지적성평가 결과의 정확성을 향상시켜 준다는 점에서 의의가 크다. 더불어 그간 제도의 시행과정에서 나타난 문제점--평가단위의 문제, 평가절차상의 문제, 기초자료 정비의 문제 등--이 보완된다면 국토 및 도시정책 수립시 이를 효과적으로 지원할 수 있는 공간의사결정지원체계(SDSS)로서도 활용될 수 있을 것이다.
본 논문에서는 연속된 프레임들의 차이 값으로부터 획득된 평균과 표준편차를 이용한 새로운 자동 임계치-결정 알고리즘을 제안하였다. 먼저, 연속된 프레임사이의 차이 값들에 대한 계산은 기존의 컬러 히스토그램과 ${\chi}^2$-테스트를 병합한 변형된 ${\chi}^2$-테스트 알고리즘을 이용하였다. 변형된 ${\chi}^2$-테스트는 각 컬러공간에 명암도 등급에 따른 가중치를 적용하여 보다 세분화된 값들에 의한 장면전환 검출을 시도할 수 있는 장점이 있다. 제안된 자동 임계치 결정 알고리즘은 획득된 전체 차이값들의 분포로부터 1차 평균과 표준편차를 구한 후, 이를 다시 주어진 차이 값들에 적용하여 1차 평균을 만족하는 차이 값들로부터 2차 평균과 표준편차를 구하며, 이러한 연속적인 평균과 표준편차의 계산으로부터 표준편차가 최대지점으로부터 작아지는 시점의 평균을 기준으로 임계치를 결정하는 방법이다. 제안된 방법은 다양한 비디오 데이터에서 실험되었으며, 실험결과 자동 임계치 결정에 효율적이며, 신뢰할만한 장면들을 검출하였다.
이 시스템은 '신발공장 라인'에서 신발 밑창 생산품을 자동적으로 측정하는 것이다. 즉 문자인식 기법으로 인식된 치수와 컴퓨터 비전에 의해 측정된 길이를 비교하여 불량품을 분류한다. 이 논문에서는 이 중 문자영역 추출에 대한 연구를 하였다. 우리가 인식하려고 g는 밑창제품의 양각된 문자의 경우는 배경과 거의 같은 밝기 값을 가지므로 하나의 임계치로 분리 불가능하며 따라서 인쇄된 문자를 인식하는 경우에와 같은 일반적인 방법으로는 양각된 문자영역을 추출하기는 쉽지 않다. 여기에서는 임계값을 달리한 에지 검출 결과에 레이블링 과정을 거친 후 객체로 인식하여 그 각각의 객체의 구성 성분을 PCA 및 기타 방법을 이용하여 해당 객체가 문자인지 아닌지를 판별하는 방법을 썼다. 이 방법의 장점으로는 다양한 환경, 물체의 색깔, 밝기가 달라져도 공통적으로 적용할 수 있는 장점을 지닌다.
본 논문에서의 공학적인 체계성을 갖고 초기 연결 가중치 및 임계치를 결정해 주면서, 학습까지 가능한 신경망을 제안한다. 기존의 오류 역전파 신경망을 적용할 때 경험에 의하여 은닉층 노드수를 결정하거나 임의의 실수 값으로 초기 연결 가중치 및 임계값을 주었을 때 자주 발생하는 학습 마비 현상을 피할 수 있고, Bose가 제안된 Voronoi 공간 분류에 의한 신경망 구성에서 학습이 불가능하다는 제안적인 단점을 보안하였다. 초기 가중치는 Voronoi 공간 분류가 이루어져 있다고 할 때 Bose가 제안한 초기 가중치 결정법을 개선하여 사용하고, Bose의 경우 신경망 노드가 Step function을 이용하여 정보를 전달하였으나 본 연구에서는 학습이 가능한 함수인 Sigmoid function을 이용하였다. 제안된 새로운 신경망의 성능 및 효율성을 비교하기 위하여 선형분리가 불가능한 XOR문제를 실험한 결과, 기존의 학습 가능한 EBP에서 허용오차 0.05 수준일 때 80%정도 학습마비 현상이 발생하였던 심각한 문제점을 보완할 수 있었고, 또한 학습 속도면에서 8~9배 정도 빠른 성능을 나타내었다.
본 논문에서는 고속의 적웅 지각 필터에서 잡음 과추정으로 인해서 발생하는 불필요한 반복 계산 및 결과 신호의 SNR 성능 저하를 개선시키는 방법을 제안한다. 적응 지각 필터를 고속연산이 가능하도록 개선하는 과정에서 시간적인 측면에서는 많은 성능의 개선이 있었지만 음질 개선 과정에서 과추정된 잡음의 적용에 의한 성능 저하가 발생하였다. 제안하는 시스템에서는 적웅 지각 필터의 임계값을 조정하고, 임계값이외에 발생하는 잡음 과추정에 대해서 실험적으로 필터 반복 연산량 제한을 통해 향상된 결과를 얻었다. 이 시스템에서 필터 반복 연산량은 입력 구간의 신호에 따라 적응적으로 제한된다. 제안된 알고리즘의 개선 확인을 위해서 감소된 반복 연산량과 SNR 개선량을 측정하여 기존의 방법과 비교하였다.
비밀번호 입력 또는 잠금 패턴을 이용한 사용자 인증은 스마트폰의 사용자 인증 방식으로 널리 사용되고 있다. 하지만 엿보기 공격 등에 취약하고 복잡도가 낮아 보안성이 낮다. 이러한 문제점을 보완하기 위해 키스트로크 다이나믹스를 인증에 적용하여 복합 인증을 하는 방식이 등장하였고 이에 대한 연구가 진행되어 왔다. 하지만, 많은 연구들이 분류기 학습에 있어서 비정상 사용자의 데이터를 함께 사용하고 있다. 키스트로크 다이나믹스를 실제 적용 시에는 정상 사용자의 데이터만을 학습에 사용할 수 있는 것이 현실적이고, 타인의 데이터를 비정상 사용자 학습 데이터로 사용하는 것은 인증자료 유출 및 프라이버시 침해 등의 문제가 발생할 수 있다. 이에 대한 대응으로, 본 논문에서는 거리기반 분류기 사용에 있어서, 분류 시 필요한 임계값의 최적 비율을 실험을 통해 구하고, 이를 밝힘으로써 실제 적용에서 정상 사용자 자료만을 이용하여 학습하고, 이 결과에 최적 비율을 적용하여 사용할 수 있도록 공헌하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.