• Title/Summary/Keyword: 일 최저기온

Search Result 230, Processing Time 0.028 seconds

Topoclimatological interpretation of the daily air temperature minima at 17 locations crossing over Yangpyeong basin in 1986 spring (봄철 양평지역(楊平地域)의 지형(地形) 및 고도(高度)에 따른 일최저기온(日最低氣溫)의 분포(分布))

  • Kang, An-Seok;Yun, Jin-Il;Jung, Yeong-Sang;Tani, No Bureru
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 1986
  • Frost damage which can reduce yields, impair fruit quality and cause loss of trees is closely related to the occurrence of daily minimum temperature. Horizontal distribution of air temperature minima can be characterized by conditions of radiational cooling and gravitational movement of cold air, which are influenced by the regional topographic features. Observations were made on the air temperature minima over Yangpyeong area, to delineate potential effects of topography on the temperature pattern during spring season. Two routes were selected for the observation. Liquid glass minimum thermometers were installed at 17 sites through the old peach orchards which had been closed due to the frequent freeze-frost hazards during the recent years. This route was 8.5km long and the highest point was 350m above mean sea level. The other route, which was 2.5km in distance, was run with a digital resistance thermometer during the hour just before sunrise. Observations were made both on a calm-clear day (April 30, 1986) and a windy-overcast day (May 1, 1986). The temperature on April 30 was in increasing trend with elevation but this was modified at near the riverside and the downtown area. An orchard lying on a hilltop showed the temperature $1^{\circ}C$ higher than near by lowland of which elevation was about 30m lower. The minimum temperature on the overcast day was little affected by terrestrial conditions but by the atmospheric lapse condition. The peach orchards severely damaged by cold air were found in the area where the lowest minimum temperature was observed. The results may be useful for selection of the proper orchard location to be developed in an area.

  • PDF

Climate Change during the recent 10 years in Korea (한반도 최근 10년 기후특성)

  • Kwon, Won-Tae;Boo, Kyung-On;Heo, In-Hye
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.278-280
    • /
    • 2007
  • 우리나라는 지난 94년간 1.5도 상승하여 전지구 온난화추세를 상회하였다. 기온뿐만 아니라 강수량 역시 변화하였는데 변동폭이 크기는 하나 장기적으로 증가하는 경향으로 20세기초에 비해 상대적으로 기온이 높고 강수량도 많은 특성을 보인다. 평균적인 기후변화추이와 더불어 특히 최근 10년($1996{\sim}2005$년)은 1850년 이후 지구평균기온이 가장 높았던 기간으로, 세계적으로 열파, 홍수, 가뭄, 태풍 등 기상이변에 의한 인명과 재산 피해, 생물종의 멸종 등 사회경제적 피해가 막대하였다. 우리나라 역시 폭염, 호우등의 빈번한 출현으로 급격해지는 온난화추세 영향을 반영하였는데 이러한 기후 변화양상을 파악하기 위하여 우리나라의 최근 10년간 기후 특성과 계절별 현상일수의 변화를 분석하였다. 최근 10년(1996-2005년) 우리나라 기후변화의 특성을 보면 우리나라(15개 관측지점자료)는 평균기온이 과거 30년$(1971{\sim}2000)$ 평균대비 $0.6^{\circ}C$ 상승하였다. 계절별로 봄은 평년대비 $0.7^{\circ}C$, 여름은 $0.4^{\circ}C$, 가을은 $0.6^{\circ}C$, 겨울은 $0.7^{\circ}C$ 상승하여 봄과 겨울의 상승폭이 가장 크다. 연강수량은 30년 평균대비 최근 10년 강수량은 11% 증가하였고 특히 여름은 증가폭이 가장 커서 18% 증가하였다. 계절에 따라 다양한 기상현상의 변화도 나타났다. 3월 이후에 나타나는 늦서리의 종료일은 평균적으로 3월 말경에 나타났는데 최근 10년에는 3월 중순으로 2주 앞당겨졌고 이 추세는 특히 1993년 이후 뚜렷하다. 늦서리의 발생일수도 평균 4일 정도 줄었다. 일평균기온 $20^{\circ}C$이상인 날은 평년에 비해 최근 10년 동안 약 2일 증가하여 여름 시작시기가 빨라지고 있음을 알 수 있다. 일최저기온이 25도 이상인 열대야는 평년대비 최근 10년간 연간발생일수가 1.3일 증가하였으나 일최고기온 $35^{\circ}C$ 이상인 날의 수는 오히려 감소하는 경향을 보인다. 이것은 여름철 강수량이 증가하고, 호우발생빈도, 특히 8월의 강수일수가 증가하고 있다는 것과 밀접한 관련이 있다. 여름과 가을에 우리나라에 영향을 미치는 태풍의 수는 뚜렷한 추세를 보이지 않으나, 2002년 루사, 2003년 매미로 인하여 각각 6조원, 4조원 이상의 막대한 피해가 발생하였다. 태풍에 의한 피해액은 GDP 대비 약 0.9%(태풍 루사)로 최근 경제상장률과 비교해 보면, 상당한 비율을 차지한다. 우리나라에 영향을 미치는 태풍은 연근해의 해수면 온도가 높아지면 세기가 강해질 가능성이 높다. 폭설과 한파일수도 평년대비 최근 10년 감소하였고 일최저기온이 영하 $10^{\circ}C$ 이하인 날도 연간 발생일수가 감소하였다. 최근 10년간 우리나라 기후의 변화특성은 기온상승과 더불어 서리종료일이 앞당겨지고 열대야가 증가하고 폭설, 한파, 겨울철 일최저기온 영하 10도 이하인 날의 감소 등이 나타나고, 여름철 재해의 원인인 호우일수는 증가하는 추세이다. 앞으로 지구온난화는 가속화될 것으로 전망되고 이로 인한 피해규모도 커질 것으로 예상된다. 최근 우리나라에서 나타나는 기후변화의 추이를 감안할 때, 기후변화에 대한 장기적인 대비책을 마련하여 이로 인한 부정적인 영향을 감소시키기 위하여 국가차원의 체계적인 대응이 필요하다.

  • PDF

A Study on the Change of Non-Working Days of Incheon Metropolitan through BCP Analysis (BCP분석을 통한 인천지역 작업불능일 변화 연구)

  • Ko, Kyujin;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.80-88
    • /
    • 2015
  • In the case of those types of work that are performed outdoor construction work, many non-working days occur due to climatic elements such as low temperature, rainfall, and high wind velocity. In particular, damage incurred construction delays hardly decreases because weather forecasting has become difficult due to global warming. In the present study, time points of drastic changes in annual average temperatures, annual average maximum temperatures, and annual average minimum temperatures were identified through BCP analysis and increasing/decreasing trends of non-working days in summer and winter were compared and analyzed on the basis of the change points. According to the results of the study, annual average temperatures drastically changed in 1988 and 1998. After the two time points, non-working days in summer and winter clearly showed increasing trends and decreasing trends respectively.

Using Digital Climate Modeling to Explore Potential Sites for Quality Apple Production (전자기후도를 이용한 고품질 사과생산 후보지역 탐색)

  • Kwon E. Y.;Jung J. E.;Seo H. H.;Yun J. I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.170-176
    • /
    • 2004
  • This study was carried out to establish a spatial decision support system for evaluating climatic aspects of a given geographic location in complex terrains with respect to the quality apple production. Monthly climate data from S6 synoptic stations across South Korea were collected for 1971-2000. A digital elevation model (DEM) with a 10-m cell spacing was used to spatially interpolate daily maximum and minimum temperatures based on relevant topoclimatological models applied to Jangsoo county in Korea. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Freezing risk in January was estimated under the recurrence intervals of 30 years. Frost risk at bud-burst and blossom was also estimated. Fruit quality was evaluated for soluble solids, anthocyanin content, Hunter L and A values, and LID ratio, which were expressed as empirical functions of temperature based on long-term field observations. AU themes were prepared as ArcGlS Grids with a 10-m cell spacing. Analysis showed that 11 percent of the whole land area of Jangsoo county might be suitable for quality 'Fuji' apple production. A computer program (MAPLE) was written to help utilize the results in decision-making for site-selection of new orchards in this region.

Modeling for Predicting Yield and $\alpha$-Acid Content in Hop (Humulus lupulus L.) from Meteorological Elements I. A Model for Predicting Fresh Cone Yield (기상요소에 따른 호프 (Humulus lupulus L.)의 수량 및 $\alpha$-Acid 함량 예측모형에 관한 연구 I. 생구화 수량 예측모형)

  • 박경열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.3
    • /
    • pp.215-221
    • /
    • 1988
  • The hop yield prediction model developed based on meteorological elements in Hoeongseong was Y=6,042.846-17.665 $X_1$-0.919 $X_2$-96.538 $X_3$-138.105 $X_4$+86.910 $X_{5}$$X_{6}$ with MS $E_{p}$ of 25.258, $R_{p}$$^{2}$ of 0.9991, R $a_{p}$$^{2}$ of 0.9962 and $C_{p}$ of 7.00. The minimum air temperature at early growing stage ( $X_1$), the total precipitation at cone ripening stage ( $X_2$), the maximum air temperature at flower bud differentiation stage ( $X_3$) and the maximum air temperature at flowering stage ( $X_4$) influenced on hop yield as decrement weather elements. The average air temperature at early growing stage ( $X_{5}$ ) and the total sunshine hours at cone development stage ( $X_{6}$ ) influenced on hop yield as increment weather elements.lements.

  • PDF

Analysis of the Effects of Some Meteorological Factors on the Yield Components of Rice (수도 수량구성요소에 미치는 기상영향의 해석적 연구)

  • Seok-Hong Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.54-87
    • /
    • 1975
  • The effects of various weather factors on yield components of rice, year variation of yield components within regions, and regional differences of yield components within year were investigated at three Crop Experiment Stations O.R.D., Suweon, Iri, Milyang, and at nine provincial Offices of Rural Development for eight years from 1966 to 1973 for the purpose of providing information required in improving cultural practices and predicting the yield level of rice. The experimental results analyzed by standard partial regression analysis are summarized as follows: 1. When rice was grown in ordinary seasonal culture the number of panicles greatly affected rice yield compared to other yield components. However, when rice was seeded in ordinary season and transplanted late, and transplanted in ordinary season in the northern area the ratio of ripening was closely related to the rice yield. 2. The number of panicles showed the greatest year variation when the Jinheung variety was grown in the northern area. The ripening ratio or 1, 000 grain weight also greatly varied due to years. However, the number of spikelets per unit area showed the greatest effects on yield of the Tongil variety. 2. Regional variation of yield components was classified into five groups; 1) Vegetation dependable type (V), 2) Partial vegetation dependable type (P), 3) Medium type (M), 4) Partial ripening dependable type (P.R), and 5) Ripening dependable type (R). In general, the number of kernel of rice in the southern area showed the greatest partial regression coefficient among yield components. However, in the mid-northern part of country the ripening ratio was one of the component!; affecting rice yield most. 4. A multivariate equation was obtained for both normal planting and late planting by log-transforming from the multiplication of each component of four yield components to additive fashion. It revealed that a more accurate yield could be estimated from the above equation in both cases of ordinary seasonal culture and late transplanting. 5. A highly positive correlation coefficient was obtained between the number of tillers from 20 days after transplanting and the number of panicles at each(tillering) stage 20 days after transplanting in normal planting and late planting methods. 6. A close relationship was found between the number of panicles and weather factors 21 to 30 days, after transplanting. 7. The average temperature 31 to 40 days after transplanting was greatly responsible for the maximum number of tillers while the number of duration of sunshine hours per day 11 to 30 days after transplantation was responsible for that character. The effect of water temperature was negligible. 8. No reasonable prediction for number of panicles was calculated from using either number of tillers or climatic factors. The number of panicles could early be estimated formulating a multiple equation using number of tillers 20 days after transplantation and maximum temperature, temperature range and duration of sunshine for the period of 20 days from 20 to 40 days after transplantation. 9. The effects of maximum temperature and day length 25 to 34 days before heading, on kernel number per panicle, were great in the mid-northern area. However, the minimum temperature and day length greatly affected the kernel number per panicle in the southern area. The maximum temperature had a negative relationship with the kernel number per panicle in the southern area. 10. The maximum temperature was highly responsible for an increased ripening ratio. On the other hand, the minimum temperature at pre-heading and early ripening stages showed an adverse effect on ripening ratio. 11. The 1, 000 grain weight was greatly affected by the maximum temperature during pre- or mid-ripening stage and was negatively associated with the minimum temperature over the entire ripening period.

  • PDF

Recent Spatial and Temporal Changes in Means and Extreme Events of Temperature and Precipitation across the Republic of Korea (최근 우리나라 기온 및 강수 평균과 극한 사상의 시.공간적 변화)

  • Choi, Gwang-Yong;Kwon, Won-Tae;Boo, Kyung-On;Cha, Yu-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.681-700
    • /
    • 2008
  • In this study, the spatial and temporal patterns of changes in means and extreme events of temperature and precipitation across the Republic of Korea over the last 35 years (1973-2007) are examined. Over the study period, meteorological winter (December-February) mean minimum (maximum) temperature has increased by $+0.54^{\circ}C$/decade ($+0.6^{\circ}C$/decade), while there have been no significant changes in meteorological summer (June-August) mean temperatures. According to analyses of upper or lower $10^{th}$ percentile-based extreme temperature indices, the annual frequency of cool nights (days) has decreased by -9.2 days/decade (-3.3 days/decade), while the annual frequency of warm nights (days) has increased by +4.9 days/decade (+6.8 days/decade). In contrast, the increase rates of summer warm nights (+8.0 days/$^{\circ}C$) and days (+6.6 days/$^{\circ}C$) relative to changes in summer means minimum and maximum temperatures means are greater than the decreasing rates of winter nights (-5.2 days/$^{\circ}C$) and days (-4.3 days/$^{\circ}C$) relative to changes in winter temperatures. These results demonstrate that seasonal and diurnal asymmetric changes in extreme temperature events have occurred. Moreover, annual total precipitation has increased by 85.5 mm/decade particularly in July and August, which led to the shift of a bimodal behavior of summer precipitation into a multi-modal structure. These changes have resulted from the intensification of heavy rainfall events above 40mm in recent decades, and spatially the statistically-significant increases in these heavy rainfall events are observed around the Taebaek mountain region.

A Geospatial Evaluation of Potential Sea Effects on Observed Air Temperature (해안지대 기온에 미치는 바다효과의 공간분석)

  • Kim, Soo-Ock;Yun, Jin-I.;Chung, U-Ran;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.217-224
    • /
    • 2010
  • This study was carried out to quantify potential effects of the surrounding ocean on the observed air temperature at coastal weather stations in the Korean Peninsula. Daily maximum and minimum temperature data for 2001-2009 were collected from 66 Korea Meteorological Administration (KMA) stations and the monthly averages were calculated for further analyses. Monthly data from 27 inland sites were used to generate a gridded temperature surface for the whole Peninsula based on an inverse distance weighting and the local temperature at the remaining 39 sites were estimated by recent techniques in geospatial climatology which are widely used in correction of small - scale climate controls like cold air drainage, urban heat island, topography as well as elevation. Deviations from the observed temperature were regarded as the 'apparent' sea effect and showed a quasi-logarithmic relationship with the distance of each site from the nearest coastline. Potential effects of the sea on daily temperature might exceed $6.0^{\circ}C$ cooling in summer and $6.5^{\circ}C$ warming in winter according to this relationship. We classified 25 sites within the 10 km distance from the nearest coastline into 'coastal sites' and the remaining 15 'fringe sites'. When the average deviations of the fringe sites ($0.5^{\circ}C$ for daily maximum and $1.0^{\circ}C$ for daily minimum temperature) were used as the 'noise' and subtracted from the 'apparent' sea effects of the coastal sites, maximum cooling effects of the sea were identified as $1.5^{\circ}C$ on the west coast and $3.0^{\circ}C$ on the east and the south coast in summer months. The warming effects of the sea in winter ranged from $1.0^{\circ}C$ on the west and $3.5^{\circ}C$ on the south and east coasts.

Feasibility of Stochastic Weather Data as an Input to Plant Phenology Models (식물계절모형 입력자료로서 확률추정 기상자료의 이용 가능성)

  • Kim, Dae-Jun;Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Daily temperature data produced by harmonic analysis of monthly climate summary have been used as an input to plant phenology model. This study was carried out to evaluate the performance of the harmonic based daily temperature data in prediction of major phenological developments and to apply the results in improving decision support for agricultural production in relation to the climate change scenarios. Daily maximum and minimum temperature data for a climatological normal year (Jan. 1 to Dec. 31, 1971-2000) were produced by harmonic analysis of the monthly climate means for Seoul weather station. The data were used as inputs to a thermal time - based phenology model to predict dormancy, budburst, and flowering of Japanese cherry in Seoul. Daily temperature measurements at Seoul station from 1971 to 2000 were used to run the same model and the results were compared with the harmonic data case. Leaving no information on annual variation aside, the harmonic based simulation showed 25 days earlier release from endodormancy, 57 days longer period for maximum cold tolerance, delayed budburst and flowering by 14 and 13 days, respectively, compared with the simulation based on the observed data. As an alternative to the harmonic data, 30 years daily temperature data were generated by a stochastic process (SIMMETEO + WGEN) using climatic summary of Seoul station for 1971-2000. When these data were used to simulate major phenology of Japanese cherry for 30 years, deviations from the results using observed data were much less than the harmonic data case: 6 days earlier dormancy release, 10 days reduction in maximum cold tolerance period, only 3 and 2 days delay in budburst and flowering, respectively. Inter-annual variation in phenological developments was also in accordance with the observed data. If stochastically generated temperature data could be used in agroclimatic mapping and zoning, more reliable and practical aids will be available to climate change adaptation policy or decision makers.