• Title/Summary/Keyword: 일축 압축강도

Search Result 611, Processing Time 0.022 seconds

Predicting Uniaxial Compressive Strength and Elastic Modulus Using Brazilian Test (Brazilian시험을 이용한 일축압축강도, 탄성계수의 추정 (I))

  • Min, Tuk-Ki;Moon, Jong-Kyu;Ro, Jai-Sool
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.131-146
    • /
    • 2008
  • Many attempts have been made to determine the uniaxial compressive strength and elastic modulus of regular specimens of rock indirectly. But little experimental work has been done to find above two parameters using Brazilian test value up to date. This paper employs Brazilian test value to estimate uniaxial compressive strength and elastic modulus of sedimentary (sand stone, shale) and metamorphic (gneiss) rocks. High reliability of Brazilian test has been supported by the established conclusions drawn from point load test and Schmidt hammer strike values. It has also been found that this method can be applied easily and rapidly to the estimation of uniaxial compressive strength and elastic modulus of rock cores when direct tests are not available.

Development of Reinforcement Grout Materials Using Reinforcing Fiber and Blast Furnace Slag Powder (보강섬유와 고로슬래그 미분말 함유량에 따른 차수그라우트재 개발)

  • Seo, Hyeok;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.101-112
    • /
    • 2019
  • The grouting method is utilized to reinforce and waterproof poor grounds, enhance the bearing capacity of geo-structures damaged from differential settlement. The purpose of this research is to improve the compressive strength and degree of grout using reinforcing fibers and blast furnace slag powder. In this regard, this study has conducted uniaxial compression tests for the specimens with high ratios (higher than 50%) of blast furnace slag powder. The carbon fiber content was increased by 0, 0.5, and 1.0% to coMpare its compressive strength with that of aramid fiber. The uniaxial compressive strength increased with the increase of fiber content and the bridging activity by fiber in cement tended to increase uniaxial compressive strength. Based on the results, it was confirmed that the aramid fiber has a gel time of 14 seconds and the uniaxial compressive strength is more than 3 Mpa coMpared to carbon fiber.

A Study on the Prediction of Uniaxial Compressive Strength Classification Using Slurry TBM Data and Random Forest (이수식 TBM 데이터와 랜덤포레스트를 이용한 일축압축강도 분류 예측에 관한 연구)

  • Tae-Ho Kang;Soon-Wook Choi;Chulho Lee;Soo-Ho Chang
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.547-560
    • /
    • 2023
  • Recently, research on predicting ground classification using machine learning techniques, TBM excavation data, and ground data is increasing. In this study, a multi-classification prediction study for uniaxial compressive strength (UCS) was conducted by applying random forest model based on a decision tree among machine learning techniques widely used in various fields to machine data and ground data acquired at three slurry shield TBM sites. For the classification prediction, the training and test data were divided into 7:3, and a grid search including 5-fold cross-validation was used to select the optimal parameter. As a result of classification learning for UCS using a random forest, the accuracy of the multi-classification prediction model was found to be high at both 0.983 and 0.982 in the training set and the test set, respectively. However, due to the imbalance in data distribution between classes, the recall was evaluated low in class 4. It is judged that additional research is needed to increase the amount of measured data of UCS acquired in various sites.

A Study on the Correlation between Uniaxial Compressive Strength and Point Load Strength Index of Limestone of Imgye Area (임계지역 석회암의 일축압축강도와 점하중강도지수의 상관관계 연구)

  • Kim, Gyoung Man;Kim, Dae Hoon;Kang, Jung Seock;Kang, Sang Soo;Baek, Hwanjo
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.330-338
    • /
    • 2012
  • Though the uniaxial compressive strength (UCS) of rock material is one of the key properties for rockmass characterization purposes, core samples for the test cannot always be obtained from the field. Indirect tests such as the point load test (PLT) can be a useful alternative. In this study, correlation between the UCS and the point load strength index of limestone of Imgye area was analyzed, and the linear regression equation obtained from regression analysis of two variables was suggested. The results of this study were also compared with previous studies on limestone. It was suggested that conversion factors for the same rock type from diverse areas in Korea may have different values, and more data should be obtained to increase the accuracy of regression analysis.

Mechanical Characteristics of Light-weighted Soils Using Dredged Soils (준설토를 활용한 경량혼합토의 역학적 특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.75-83
    • /
    • 2002
  • This paper is to investigate the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene(EPS), dredged clays and cement by using both uniaxial and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analysed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing stress. In the triaxial compression state, it is found that the compressive strength of LWS containing EPS is independent on the effective confined stress. As the EPS ratio decreases($A_E$<2%) and cement ratio increases($A_c$>2%), the behavior characteristics of triaxial compressive strength-strain relationship is similar to that of cemented soil which decreases rapidly in compressive strength after ultimate compressive strength. For the applications of LWS to ground improvements which require the compressive strength of up to 200kPa, the optimized EPS ratio and initial water content of dredged clay are estimated to be 3~4% and 165~175%, respectively. Also, the ultimate compressive strength under both triaxial test and uniaxial compression states are almost constant for a cement ratio of up to 2% and then critical cement ratio of this LWS shall be 2%.

Strength Anisotropy through Artificial Weak Plane of Mudstone (인공연약면을 따른 이암의 강도이방성에 관한 연구)

  • Lee, Young-Huy;Jeong, Ghang-Bok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.111-120
    • /
    • 2008
  • The characteristic of induced anisotropy is investigated in this study for the Pohang mudstone involving the cut plane discontinuity. The uniaxial and triaxial compression tests are performed for anisotropic rocks with artificial joint to look into anisotropic strength characteristics. Both the uniaxial compressive strength and triaxial compressive strength show the lowest value at the angle of cut plane, ${\beta}=30^{\circ}$ and the shoulder type of anisotropy is obtained. Anisotropy ratio (Rc) in uniaxial compression measures 9.0, whereas Rc=1.29-1.98 in triaxial compression is appeared. A series of analyses are made with the test results to derive the suitable parameter values when it is applied to the Ramamurthy (1985) failure criterion. The result of uniaxial compression test is analyzed by introducing the n-index into Ramamurthy failure criterion. The result shows that, n=l is suitable for ${\beta}=0^{\circ}{\sim}30^{\circ}$ and n=3 is suitable for ${\beta}=30^{\circ}{\sim}90^{\circ}$. To analyze the result of triaxial compression test by Ramamurthy failure criterion, anisotropy ratio in uniaxial compression test is added to Ramamurthy's equation and material constants are estimated by modified Ramamurthy's equation. When these values are applied back to Ramamurthy failure criterion, the predicted values are well fitted to the test results. And strength anisotropy for failure criteria of Jaeger (1960), McLamore & Gray (1967) and Hoek & Brown (1980) are also investigated.

Analysis of Compressive Strength of Lightweight Air-mixed Soil According to the Properties of Soil (원료토의 특성에 따른 경량기포혼합토의 압축강도 영향인자 분석)

  • Song, Jun-Ho;Im, Jong-Chul;Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.157-166
    • /
    • 2008
  • To investigate the relationship between compressive strength ($q_u$) of Lightweight Air-mixed soil (LAS) and its physical deformation coefficient ($E_{50}$), a series of unconfined compressive tests have been performed on specimens of LAS according to various dredged soil types by percentage of sand, silt and clay. From the results it was found that the cement content ($C_i$) and unit weight (${\gamma}_m$) are most influence factors on strength, and percentage of sand, silt, clay by grain size analysis (KS F2302) have more effect on compressive strength than other physical properties of soil. It was also found that the rate of strength (a) increases with curing time, but it reduces with the increase of percentage of clay ($C_%$).

A Study on Sand Cementation and its Early-Strength Using Blast Furnace Slag and Alkaline Activators (고로슬래그와 알칼리 활성화제를 이용한 모래 고결 및 조기강도에 관한 연구)

  • Park, Sung-Sik;Choi, Sun-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.45-56
    • /
    • 2013
  • In this study, a blast furnace slag with latent hydraulic property is used to cement granular soils without using Portland cement. When the blast furnace slag reacts with an alkaline activator, it can cement soils. The effect of amounts of blast furnace slag and types of alkaline activator on soil strength was investigated for resource recycling. Four different amounts of slag and six different activators (two naturals and four chemicals) were used for preparing specimens. The specimens were air-cured for 3 or 7 days and then tested for unconfined compressive strength (UCS). The UCS of cemented sand with slag increased, in the order of specimens mixed with potassium carbonate, calcium hydroxide, sodium hydroxide and potassium hydroxide. Chemical alkaline activator was better than natural alkaline activator. The maximum UCS of 3-days cured specimens was 3 MPa for 16% of slag with potassium hydroxide, which corresponded to 37% of one with 16% of high-early strength portland cement. As the amount of slag increased, the UCS and dry density of a specimen increased for all alkaline activator cases. As the curing time increased from 3 days to 7 days, the UCS increased up to 97%. C-S-H hydrates were found in the cemented specimens from XRD analyses. Cement hydrates were more generated with increasing amount of slag and they surrounded sand particles, which resulted in higher density.

Estimation of Weathering Characteristics of Sandstone and Andesite by Freeze-Thaw Test (동결융해시험에 의한 사암 및 안산암의 풍화특성 평가)

  • Kang, Seong-Seong;Kim, Jong-In;Obara, Yuzo;Hirata, Atsuo
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • Variations of physical properties such as weight loss rate, wave velocity and uniaxial compressive strength after performing freeze-thaw cyclic test were measured in order to define weathering characteristics of sandstone and andesite. Weight change in specimens of the two rocks decreased with increasing the repetition number of freeze-thaw cyclic test. In particular, weight loss of andesite specimens was very irregular. P-wave velocity of sandstone specimens decreased more than 5%. On the other hand, P-wave velocity of andesite specimens do not vary up to 500 cycles and decreased more than 5% after 1000 cycles. This implies that the sandstone are easily weakened and loosened by weathering processes, while the andesite are relatively strong. In addition, the wave velocity changes of the andesite specimens coincident with the weight change. Uniaxial compressive strengths of the sandstone specimens slightly decreased at the early stage of the freezing-thawing cyclic test, then tended to be irregular after 64 cycles. In conclusion, the rock specimens showed smaller weight loss, less had lower strength reduction rate.

Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents (세립분 함유량에 따른 동결 사질토의 응력-변형률-강도 특성)

  • Chae, Deokho;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.31-38
    • /
    • 2015
  • Recently, the participation on the development of the natural gas pipeline in Russia as well as the recent construction of the second Korean Antarctic research station, the Jangbogo station provide the research interests on the behavior of the permafrost ground. To investigate the effect of fines on the mechanical responses of frozen sands, unconfined compression tests were performed on the frozen sands with 0, 5, 10 and 15% of fine contents at -5, -10 and $-15^{\circ}C$. The poorly graded (SP) Joomunjin sand and kaolinite, silt with low plasticity (ML) were used for the preparation of the frozen soil specimens. The mechanical responses of the tested soils were investigated via unconfined compression tests in the temperature controlled laboratory and analyzed in terms of peak unconfined compressive strength and secant modulus at 50% of the peak strength. As the fine contents increase, the unfrozen water contents increase and thus the strength and stiffness of frozen soils decrease. The increment of the stiffness and strength due to the temperature decrease vary with the fine contents.