• Title/Summary/Keyword: 일최고기온분포도

Search Result 56, Processing Time 0.029 seconds

Evaluation of Health Impact of Heat Waves using Bio-Climatic impact Assessment System (BioCAS) at Building scale over the Seoul City Area (생명기후분석시스템(BioCAS)을 이용한 폭염 건강위험의 검증 - 서울시 건물규모를 중심으로 -)

  • Kim, Kyu Rang;Lee, Ji-Sun;Yi, Chaeyeon;Kim, Baek-Jo;Janicke, Britta;Holtmann, Achim;Scherer, Dieter
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.514-524
    • /
    • 2016
  • The Bio-Climatic impact Assessment System, BioCAS was utilized to produce analysis maps of daily maximum perceived temperature ($PT_{max}$) and excess mortality ($r_{EM}$) over the entire Seoul area on a heat wave event. The spatial resolution was 25 m and the Aug. 5, 2012 was the selected heat event date. The analyzed results were evaluated by comparing with observed health impact data - mortality and morbidity - during heat waves in 2004-2013 and 2006-2011,respectively. They were aggregated for 25 districts in Seoul. Spatial resolution of the comparison was equalized to district to match the lower data resolution of mortality and morbidity. Spatial maximum, minimum, average, and total of $PT_{max}$ and $r_{EM}$ were generated and correlated to the health impact data of mortality and morbidity. Correlation results show that the spatial averages of $PT_{max}$ and $r_{EM}$ were not able to explain the observed health impact. Instead, spatial minimum and maximum of $PT_{max}$ were correlated with mortality (r=0.53) and morbidity (r=0.42),respectively. Spatial maximum of $PT_{max}$, determined by building density, affected increasing morbidity at daytime by heat-related diseases such as sunstroke, whereas spatial minimum, determined by vegetation, affected decreasing mortality at nighttime by reducing heat stress. On the other hand, spatial maximum of $r_{EM}$ was correlated with morbidity (r=0.52) but not with mortality. It may have been affected by the limit of district-level irregularity such as difference in base-line heat vulnerability due to the age structure of the population. Areal distribution of the heat impact by local building and vegetation, such as spatial maximum and minimum, was more important than spatial mean. Such high resolution analyses are able to produce quantitative results in health impact and can also be used for economic analyses of localized urban development.

Seasonal Onset and Duration in South Korea (우리나라 사계절 개시일과 지속기간)

  • Choi, Gwang-Yong;Kwon, Won-Tae;Robinson David A.
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.435-456
    • /
    • 2006
  • This study examines the long-term spatial patterns and recent trends of seasonal onsets and durations defined by daily temperatures in South Korea for the period 1973-2004. Spatially, spring and winter onset dates show approximately 44 day and 63 day maximum difference respectively between south and north (Seongsanpo to Daegwallryeong) attributable to the impacts of latitudes and altitudes. In contrast, summer onset, which is more affected by proximity to oceans and altitudes than by latitudes, begins earlier in interior low elevated areas than in the coastal areas but earliest at higher latitudes than Jeiu Island. Five climatic types regarding the seasonal cycles in South Korea are spatially clustered according to the combination of longer seasonal durations. As a reflection of recent climate changes on seasonal cycles in South Korea, winter duration was shortened by 10 days during the post-1988 period due to a late winter onset of 4 days and an early spring onset of 6 days. The winter reduction began in the southern regions of the Korean Peninsula in the mid-1980s and spread northward during the 1990s period, ultimately appearing everywhere. In urbanized cities, where much of the surface is covered with asphalt or concrete, the winter reduction was intensified and summer duration was locally incremented. The reduced winter duration in recent decades shows significant teleconnections with variations of geopotential height (925hPa) in the eastern Arctic region ($0-90^{\circ}E$, $65-85^{\circ}N$) during the cold season. The reduction in winter duration in South Korea agrees with results in overall global warming trends as a climate change signal.

A Definition of Korean Heat Waves and Their Spatio-temporal Patterns (우리나라에 적합한 열파의 정의와 그 시.공간적 발생패턴)

  • Choi, Gwang-Yong
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.5 s.116
    • /
    • pp.527-544
    • /
    • 2006
  • This study provides a definition of heat waves, which indicate the conditions of strong sultriness in summer, appropriate to Korea and intends to clarify long term(1973-2006) averaged spatial and temporal patterns of annual frequency of heat waves with respect to their intensity. Based on examination of the Korean mortality rate changes due to increase of apparent temperature under hot and humid summer conditions, three consecutive days with at least $32.5^{\circ}C,\;35.5^{\circ}C,\;38.5^{\circ}C,\;and\;41.5^{\circ}C$ of daily maximum Heat Index are defined as the Hot Spell(HS), the Heat Wave(HW), the Strong Heat Wave(SHW), and the Extreme Heat Wave(EHW), respectively. The annual frequency of all categories of heat waves is relatively low in high-elevated regions or on islands adjacent to seas. In contrast, the maximum annual frequency of heat waves during the study period as well as annual average frequency are highest in interior, low-elevated regions along major rivers in South Korea, particularly during the Changma Break period(between late July and mid-August). There is no obvious increasing or decreasing trend in the annual total frequency of all categories of heat waves for the study period However, the maximum annual frequencies of HS days at each weather station were recorded mainly in the 1970s, while most of maximum frequency records of both the HW and the SHW at individual weather stations were observed in the 1990s. It is also revealed that when heat waves occur in South Korea high humidity as well as high temperature contributes to increasing the heat wave intensity by $4.3-9.5^{\circ}C$. These results provide a useful basis to help develop a heat wave warning system appropriate to Korea.

Analysis of Hydrological Characteristics of the Chantancheon Catchment 2017 (2017년 차탄천 유역의 수문학적 특성 분석)

  • Kim, Dong Phil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.341-345
    • /
    • 2018
  • 우리나라는 전 국토의 70%가 산지이고 하천경사가 다른 나라에 비해 상대적으로 급하여 홍수 관리에 매우 불리한 조건을 가지고 있으며, 특히 홍수기간의 집중호우 및 돌발홍수는 인명과 재산의 막대한 피해를 입히고 있다. 최근은 기후변화로 인하여 극심한 홍수, 가뭄 등 재해의 발생빈도가 증가하는 추세로 기후변화의 영향을 최소화할 수 있는 수재해 방재관리가 필요한 상황이다. 중 대하천의 경우에는 비교적 수재해 방재관리가 잘 이루어지고 있으나, 소하천(일부 중하천 포함)의 경우에는 취약한 구조를 보이고 있다. 특히 홍수기간(7월~9월)의 인명과 재산의 피해는 주로 소하천 위주로 발생하고 있으며, 사전 사후의 체계적인 대응이 이루어지지 못하고 있다. 수재해 방재관리를 위해서는 일차적으로 수문자료의 획득에 있으며, 그 이후 해당 유역에 적합한 수재해 대응을 위한 체계적인 방법론과 방재시스템 개발 운영이 수반되어야 안전한 방재관리를 할 수 있다. 따라서 수재해 방재관리 체계를 구축하기 위해서는 중 소규모 유역 단위를 대상으로 지속적이고 신뢰성 있는 자료의 획득과 축적이 중요하므로 중 소규모 유역 단위의 대표성 있는 시험유역의 운영은 매우 의미가 있다고 볼 수 있다. 본 논문에서는 한국건설기술연구원에서 운영하는 차탄천 유역(유역면적 $190.64km^2$, 유로경사 0.96%, 경기도 연천군 소재)의 신뢰성 높은 2017년 관측자료를 이용하여 강우특성, 유출특성, 증발산량 등 수문특성을 분석하였으며, 과거 관측결과와 비교하였다. 강우특성 분석으로는 호우사상 분리, 주요 호우사상 분석, 지속기간별 최대강우량, 시간분포 등이 있다. 2017년은 2016년보다 최대 강우지속기간과 평균 강우지속기간은 크게, 최대 강우강도는 작게, 평균 강우강도는 크게 나타나는 호우의 특징을 보이고 있다. 2017년의 하천유출률은 강우량 대비 53.1%(장진교, 유역출구)와 60.4%(보막교, 중간소유역)로 과거 5년간의 평균 유출률인 장진교(52.4%)와 4년간의 평균유출률인 보막교(58.8%)와 비슷한 값을 보인다. 강우유출특성 분석결과 연간 강우량은 다소 적었지만, 평균 강우강도의 증가에 기인하여 2017년의 연간 하천유출량은 2016년보다 장진교는 약 39.5%의 증가와 보막교는 약 2.9% 감소가 하였다. 수문학적 동질성 갖는 유역에서 하천유출량의 차이는 강우량 발생 시기(2016년의 경우는 10월에 215.7mm의 강우량 발생)와 토지이용(중 하류부 농경지 발달)의 차이에 기인한다고 볼 수 있다. 그리고 2017년의 증발산량은 강우량 대비 장진교는 38.4%, 보막교 35.1%로 2016년 장진교의 50.1%보다는 감소하고, 보막교의 35.4%와는 비슷한 값을 보인다. 온도, 습도, 풍속, 일조시간에 영향을 받는 증발산량은 2016년 대비 기온(일최고/일최저)의 감소(90.6%) 습도(일최대/일평균/일최저)의 감소(98.5%), 일평균 풍속의 감소(54.7%)에 기인하여 적은 증발산량을 보이는 것으로 분석되었다. 이와 같이 산정된 수문자료는 수재해 방재를 위한 기초자료로 매우 유용하게 활용되므로 지속적인 시험유역의 운영은 매우 필요하다.

  • PDF

Projection of Future Snowfall by Using Climate Change Scenarios (기후변화 시나리오를 이용한 미래의 강설량 예측)

  • Joh, Hyung-Kyung;Kim, Saet-Byul;Cheong, Hyuk;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.188-202
    • /
    • 2011
  • Due to emissions of greenhouse gases caused by increased use of fossil fuels, the climate change has been detected and this phenomenon would affect even larger changes in temperature and precipitation of South Korea. Especially, the increase of temperature by climate change can affect the amount and pattern of snowfall. Accordingly, we tried to predict future snowfall and the snowfall pattern changes by using the downscaled GCM (general circulation model) scenarios. Causes of snow varies greatly, but the information provided by GCM are maximum / minimum temperature, rainfall, solar radiation. In this study, the possibility of snow was focused on correlation between minimum temperatures and future precipitation. First, we collected the newest fresh snow depth offered by KMA (Korea meteorological administration), then we estimate the temperature of snow falling conditions. These estimated temperature conditions were distributed spatially and regionally by IDW (Inverse Distance Weight) interpolation. Finally, the distributed temperature conditions (or boundaries) were applied to GCM, and the future snowfall was predicted. The results showed a wide range of variation for each scenario. Our models predict that snowfall will decrease in the study region. This may be caused by global warming. Temperature rise caused by global warming highlights the effectiveness of these mechanisms that concerned with the temporal and spatial changes in snow, and would affect the spring water resources.

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.

The Nopsae;a Foehn type wind over the Young Suh region of central Korea (영서지방의 푄현상)

  • ;Lee, Hyon-Young
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.266-280
    • /
    • 1994
  • Upper-air synoptic data and surface weather elements such as temperature, relative humidity, wind speed, cloud and precipitation were analyzed in some detail to determine the characteristics of Nopsae, a foehn-like surface wind over the Youngsuh region of Central Korea. NOAA AVHRR and GMS images are also referenced to identify the distribution of clouds and precipitation to classify the tpyes of foehn over the study area. The data period examined is from 1982 until 1993 of spring and summer months from March through August. Results of the anaylsis are as follows. Warm and dry air penetration over the Younesuh region has experienced on foehn days occured between March 21 and August 10 during study perion. The mean annual number of foehn the days were 28. Foehn phenomena were prominent during March 21-25, April 5-15, May 25-June 10, and June 26-30 pentads. The intensity of the phenomena can be evaluated as the difference of daily maximum temperature and relative humidity between windward sites and leeward sites. The intensity of daily maximum temperature reached 14.5$^{\circ}C$, but most values were in the range of 5.0-7.5$^{\circ}C$ (61%). Although strong intensity of foehns usually develop in June, it is common that farmers in the region experince more aridity during the foehnday of April and May due to the transplantation of rice seedlings. Long-run foehn are not common phenomena and 55% of foehn terminate in one day, but there is a record that Nopsae persisted up to 9 days continuously. The author identified using the cloud and precipitation data out of NOAA-11, AVHRR and GMS images is that one of them has no precipitation over windward side. The available data and the results of the analysis are somewhat inadequate. Since the results imply that wave phenomenon is potentially important in terms of local surface weather and vertical momentum transport, more detailed theoretical and observational studies are necessary to clarify the mechanism and the impacts of Nopsae.

  • PDF

Finite Difference Model of Unsaturated Soil Water Flow Using Chebyshev Polynomials of Soil Hydraulic Functions and Chromatographic Displacement of Rainfall (Chebyshev 다항식에 의한 토양수분특성 및 불포화 수리전도도 추정과 부분 치환 원리에 의한 강우 분포를 이용한 토양수분 불포화 이동 유한차분 수리모형)

  • Ro, Hee-Myong;Yoo, Sun-Ho;Han, Kyung-Hwa;Lee, Seung-Heon;Lee, Goon-Taek;Yun, Seok-In;Noh, Young-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.181-192
    • /
    • 2003
  • We developed a mathematical simulation model to portray the vertical distribution of soil water from the measured weather data and the known soil hydraulic properties, and then compared simulation results with the periodically measured soil water profiles obtained on Jungdong sandy loam to verify the model, In this model, we solved potential-based Richards' equation by the implicit finite difference method superimposed on the predictor-corrector scheme. We presumed that: soil hydraulic properties are homogeneous; soil water flows isothermally; hysteresis is not considered; no vapor flows; no heat transfers into the soil profiles; and water added to soil surface is distributed along the soil profile following partial displacement principle. The input data were broadly classified into two groups: (1) daily weather data such as rainfall, maximum and minimum air temperatures, relative humidity and solar radiation and (2) soil hydraulic data to approximate unsaturated hydraulic conductivity and water retention. Each hydraulic polynomial function approximated using the Chebyshev polynomial and least square difference technique in tandem showed a fairly good fit of the given set of data. Vertical distribution of soil water as approximations to the Richards' equation subject to changing surface and phreatic boundaries was solved numerically during 53 days with a comparatively large time increment, and this pattern agreed well with field neutron scattering data, except for the surface 0.1 m slab.

Synoptic Climatological Characteristics of Spring Droughts in Korea (한국의 춘계한발의 종관기후학적 특성)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.43-56
    • /
    • 1998
  • The purpose of this study is to identify distributional characteristics of climatic elements and to analyze synoptic characteristics on the pressure fields for spring droughts in Korea. In the distributions of minimum temperature during the spring droughts, positive anomalies and negative anomalies are mixed up, but in March the negative anomaly areas are widely distributed in Korea. It implies that the droughts of March have more frequent occurrences of the west-high, east-low pressure patterns. In the maximum air temperatures, the positive anomalies appear in Korea. It indicates that the spring droughts have rain days, cloud amount and humidities less than normal. As a result, the amount of evaporation is increased in Korea. In the pressure anomaly of surface pressure fields, the positive anomalies appear in the west, negative anomalies in the east in March, but in May the positive anomalies appeared zonally around the Korean peninsula. It indicates that March droughts have more frequent occurrences of the west-high. east-low patterns, but in May the Korean Peninsula has more frequent recurrences of the migratory anticyclone patterns. The height anomaly patterns of 500hPa pressure surface in spring droughts are similarly shown to those of surface fields. In March droughts, the positive height anomalies appear in the west, the negative height anomalies in the east, but in April the negative height anomaly areas are extended to the west part. In May the positive anomalies appear zonally around the Korean Peninsula, and strong positive height anomalies appear around the Kamchatka Peninsula and the sea of Okhotsk. These are the result of circulations that inhibit the eastward movement of westerlies and that has persistent anticyclone circulation patterns around the Korean Peninsula. As a result, the zonal indices of westerlies during March and April droughts are lower than normal, but higher in May. These data indicate that early spring droughts are associated with weak zonal flow, but the late spring droughts are obviously related with strong zonal flow. In addition, during early spring droughts the abnormally deep trough over the west coast of the North Pacific Ocean that accompanied the anticyclone was associated with frequent advection of air from the dry regions in the Central Asia into the Korean Peninsula. The atmospheric circulation patterns at the height of the 500hPa pressure surface in May was quite different from March and April circulation patterns. Instead of the abnormal ridge in the west and trough in the east, the circulation pattern in May was characterized by a much stronger than normal anticyclone over the Korean Peninsula. Also, the zonal indices of westerlies in May are higher than normal. The occurrences of drought in early spring, therefore, have mechanism different from those of late spring.

  • PDF

Seasonal Changes in Micrometeological Factors of a Costal Sand Dune Grassland Ecosystem in Hakampo, Taeanhaean National Park, Korea (태안해안국립공원 학암포 해안사구 초지생태계의 미기상인자 계절변화)

  • Lee, Na-Yeon;Choi, In Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Coastal sand dune area is an important ecosystem as an ecotone which is located between coastal area and terrestrial area. In order to understand the sand dune ecosystem in terms of its habitat characteristics, micrometeorological analysis was carried out in a coastal sand dune in Hakampo, Taeanhaean National Park, Korea. Micrometeorological measurements were made to monitor air and soil temperatures, relative humidity, soil water content, rainfall, solar radiation, wind speed, and wind direction. In contrary to a forest ecosystem, the coastal sand dune grassland ecosystem was relatively hotter and very humid with heavy rainfalls concentrated between June and July. The seasonal change of daily mean soil temperature was greater than that of air temperature by $2{\sim}3^{\circ}C$. Daily mean soil water content was less than 10% throughout the year. Also, the maximum wind speed of 156.7 m $s^{-1}$ was recorded on 7 October 2011. The observed seasonal wind direction was different from those observed at Seosan by KMA (Korea Meteorological Administration). To better understand the habitat characteristics in a costal sand dune grassland ecosystem, long-term multi-year measurements are needed.