• Title/Summary/Keyword: 일체형 구조

Search Result 268, Processing Time 0.022 seconds

Analysis of Impact on the Circulating Water System due to an Installation of Helical Current Turbine at the Discharge Channel of the Power Plant (헬리컬 조류수차 설치로 인한 발전소 배수로 계통 영향 분석)

  • Kim, Ji-Young;Kang, Keum-Seok;Ryu, Moo-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.67-72
    • /
    • 2010
  • In this study, the impact on the circulating water system has been analyzed due to an installation of helical turbine to develop hydro-kinetic energy at the discharge channel of the power plant. Numerical simulations of velocity and pressure variations have been performed when one set of $3.6\;m\;{\times}\;1.5\;m$ sized helical turbine is installed at the outlet of discharge culvert. In case of mean sea level, change of downstream water surface elevation does not affect upstream elevation of the weir because its propagation is blocked by the seal well weir. However in case of highest high water level, change of downstream elevation affects upstream elevation because flow pattern in discharge culvert becomes the full pipe flow with submerged weir. Although an unstable pressure change occurs in upstream of the weir during the intial 10 minutes after beginning of the discharge, it becomes stable after that time. In addition, a rise of water surface elevation by 0.2 m is observed but it is concluded that it hardly affects the safety of circulating water pump (CWP) although its required power is increased more or less. Therefore, the increase of required power of CWP needs to be considered for evaluation of the helical turbine applicability.

Development of rotor overlay welding process (로타 오버레이 용접공정 개발)

  • Lee, Kyong-Woon;Kim, Dong-Jin;Kang, Sung-Tae
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.12-12
    • /
    • 2009
  • 터빈에서 핵심부품인 로터는 블레이드를 원심 운동시키는 대형 단조강이며, 고압의 증기 조건에서 고속회전하며 고온에서 운전과 저온에서 과속시험 동안 높은 원심력을 받는다. 또한 기동/정지 천이 동안 열응력을 받기 때문에, 이러한 운전조건에 부합되는 소재로서는 높은 Creep 강도 및 피로강도를 가지는 CrMoV type의 강종이 사용되어져 왔다. 발전소의 대용량화 및 고온화에 따라 종래의 증기조건에서 사용되어져 왔던 1%CrMoV강은 내산화성 및 내부식성이 문제가 되어 더 이상 사용이 불가하며, 고온/고압하에서도 우수한 소재 특성을 가지는 12%Cr강의 사용이 필수적이다. 그러나 12%Cr강으로 제작되는 로타는 Cr 양이 높기 때문에 저널부에 Galling 또는 Scuffing 이라 불리는 부적절한 마모현상과 사용 중 소착이 발생하기 쉬운 단점이 있기 때문에, 저널부에 Cr 함유량 2~3% 이하의 저합금강을 오버레이 용접하여 육성하는 일체형 가공구조의 로타 저널부가 주목되어 왔다. 따라서 본 연구에서는 Large scale 로타가 용접 도중 급열 및 급냉이 되지 않으면서 균일한 온도로 일정 시간 유지할 수 있는 열관리 장치 개발, 최적 오버레이 용접조건 선정 및 용접부 건전성 시험 평가를 통하여 12%Cr 로타 저널부의 최적 오버레이 용접공정을 확립하고자 하였다. 용접 열관리 장치는 전기저항 가열방식을 적용하고 있으며 용접이 최종 완료되기 전까지 로타 제품 전체는 $93^{\circ}C$이상의 온도로 유지 되어져야 하며, 규정 용접후열처리 온도는 $650^{\circ}C{\pm}14^{\circ}C$ 이다. 또한 로타 오버레이 용접은 모재 Set up $\Rightarrow$ 용접예열 $\Rightarrow$ GTA용접 $\Rightarrow$ SA용접 $\Rightarrow$ 용접후열(Post heating) $\Rightarrow$ 용접후열처리(PWHT) $\Rightarrow$ 정삭가공 $\Rightarrow$ NDE(UT) 순으로 수행 되어진다 실제 로타의 1/3 Scale로 시험편을 제작하여, 오버레이 mockup 시험을 수행한 후 화학성분, 경도 분포, 인장강도, 충격인성 및 굽힘시험을 수행한 결과, 오버레이 용접에서 요구되어지는 용접 물성값을 만족하는 것으로 확인되었다. 또한 균열 등의 선형 결함이나 기공, 슬라그 혼입과 같은 결함은 관찰되지 않았으며, 용접 시 아크의 안정성과 슬라그의 박리성은 양호하였으며 비드의 외관도 미려하여 용접 작업성도 양호하였다.

  • PDF

STRESS DISTRIBUTION OF ENDODONTICALLY TREATED MAXILLARY SECOND PREMOLARS RESTORED WITH DIFFERENT METHODS: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (상이한 방법으로 수복한 근관치료된 상악 제2소구치의 응력분포: 3차원 유한요소법적 분석)

  • Lim, Dong-Yeol;Kim, Hyeon-Cheol;Hur, Bock;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.69-79
    • /
    • 2009
  • The purpose of this study was to evaluate the influence of elastic modulus of restorative materials and the number of interfaces of post and core systems on the stress distribution of three differently restored endodontically treated maxillary second premolars using 3D FE analysis. Model 1, 2 was restored with a stainless steel or glass fiber post and direct composite resin. A PFG or a sintered alumina crown was considered. Model 3 was restored by EndoCrown. An oblique 500 N was applied on the buccal (Load A) and palatal (Load B) cusp. The von Mises stresses in the coronal and root structure of each model were analyzed using ANSYS. The elastic modulus of the definitive restorations rather than the type of post and core system was the primary factor that influenced the stress distribution of endodontically treated maxillary premolars. The stress concentration at the coronal structure could be lowered through the use of definitive restoration of high elastic modulus. The stress concentration at the root structure could be lowered through the use of definitive restoration of low elastic modulus.

Frequency Sounding in Small-Loop EM Surveys (소형루프 전자탐사법에서의 주파수 수직탐사)

  • Cho In-Ky;Lim Jin-Taik
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.119-125
    • /
    • 2003
  • The small-loop electromagnetic (EM) technique has been used successfully for many geophysical investigations, particularly for shallow engineering and environmental surveys. In conventional small loop EM operating at small induction numbers, geometric sounding has been widely used because the depth of penetration of EM energy depends only on the source-receiver separation. Recently developed small loop EM system, however, measures the secondary magnetic field, $H^S$, at multiple frequencies with a fixed source-receiver separation and frequency sounding is tried actively. In this study, we analyzed the behavior of in-phase and quadrature components of ${H^S}_z$, for horizonal coplanar (HCP) configuration over two-layer models. Through this theoretical analysis, it was found that the in-phase component of ${H^S}_z$ is more suitable for frequency sounding than the quadrature component. But, the in-phase component of ${H^S}_z$ is too small to measure, especially in resistive and noisy environment like Korea. Using the fact that the quadrature component is much greater than the in-phase component and the difference of quadrature component of ${H^S}_z$ measured at two frequencies shows the same behavoir as the in-phase component, we suggested an alternative frequency sounding technique. Also, we defined an apparent conductivity, which reflects well the conductivity of subsurface layers.

A Reconfigurable Scheduler Model for Supporting Various Real-Time Scheduling Algorithms (다양한 실시간 스케줄링 알고리즘들을 지원하기 위한 재구성 가능한 스케줄러 모델)

  • Shim, Jae-Hong;Song, Jae-Shin;Choi, Kyung-Hee;Park, Seung-Kyu;Jung, Gi-Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.4
    • /
    • pp.201-212
    • /
    • 2002
  • This paper proposes a reconfigurable scheduler model that can support various real-time scheduling algorithms. The proposed model consists of two hierarchical upper and lower components, task scheduler and scheduling framework, respectively. The scheduling framework provides a job dispatcher and software timers. The task scheduler implements an appropriate scheduling algorithm, which supports a specific real-time application, based on the scheduling framework. If system developers observe internal kernel interfaces to communicate between two hierarchical components, they can implement a new scheduling algorithm independent of complex low kernel mechanism. Once a task scheduler is developed, it can be reused in a new real-time system in future. In Real-Time Linux (5), we implemented the proposed scheduling framework and several representative real-time scheduling algorithms. Throughout these implementations, we confirmed that a new scheduling algorithm could be developed independently without updates of complex low kernel modules. In order to confirm efficiency of the proposed model, we measured the performance of representative task schedulers. The results showed that the scheduling overhead of proposed model, which has two separated components, is similar to that of a classic monolithic kernel scheduler.

A Study on Fish Movement Efficiency in Biopolymer and Aggregate Mixed Fishway (피마자유기반 바이오폴리머와 골재를 혼합한 어도의 어류이동효율 실험연구)

  • Dong-Jin Lee;Min Ho, Jang;Joongu Kang;Hong-Kyu Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.1
    • /
    • pp.11-22
    • /
    • 2024
  • A fishway is an artificial waterway or device used to resolve difficulties in the movement of fish in a river. Most existing fishways are made of concrete and emit toxic substances, which has a negative impact on the river environment. Accordingly, there is a need to develop fishway construction technology that is eco-friendly and can increase movement efficiency. The technology presented in this study is an integrated porous structure that combines the aggregate with a biopolymer material extracted from castor oil, a non-toxic material. It is a fishway construction technology using eco-friendly materials that can allow vegetation to grow on the surface. In this study, an eco-friendly fishway mixed with biopolymer and aggregate was built on a real scale and the fish movement efficiency was tested and analyzed. As a result of the experiment, a total of 201 fish of 14 species were released with tags inserted, and the detection rate of released fish was confirmed to be 82.6% on average. A total of 40 fish of 6 species were transported upstream through the fishway, and the average passage rate was confirmed to be 21.7%. As a result of checking the circadian migration pattern, it was found that all fish mainly migrate during the day. It was confirmed that there was no significant functional difference between a fishway using biopolymer and a concrete fishway. It is believed that a fishway using biopolymer can be used as a replacement for a concrete fishway.

Stabilizing Soil Moisture and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System Controlled by Humidifying Cycle (가습 주기에 따른 벽면형 식물바이오필터의 토양 수분 안정화 및 실내공기질 정화)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.605-617
    • /
    • 2015
  • The ultimate goal of this research is to develop a botanical biofiltration system that combines a green interior, biofiltering, and automatic irrigation to purify indoor air pollutants according to indoor space and the size of biofilter. This study was performed to compare the stability of air flow characteristics and removal efficiency (RE) of fine dust within a wall-typed (vertical) botanical biofilter depending on humidifying cycle and to investigate RE of volatile organic compounds (VOCs) by the biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be suitable for indoor space utilization. As a result, relative humidity, air temperature, and soil moisture content (SMC) within the biofilter showed stable values regardless of three different humidifying cycles operated by the metering pump. In particular, SMCs were consistently maintained in the range of 27.1-29.7% during all humidifying cycles; moreover, a humidifying cycle of operating for 15 min and pausing for 45 min showed the best horizontal linear regression (y = 0.0008x + 29.09) on SMC ($29.0{\pm}0.2%$) during 120 hour. REs for number of fine dust (PM10) and ultra-fine dust (PM2.5) particles passed through the biofilter were in the range of 82.7-89.7% and 65.4-73.0%, respectively. RE for weight of PM10 passed through the biofilter was in the range of 58.1-78.9%, depending on humidifying cycle. REs of xylene, ethyl benzene, total VOCs (TVOCs), and toluene passed through the biofilter were in the range of 71.3-75.5%, while REs of benzene and formaldehyde (HCHO) passed through the biofilter were 39.7% and 44.9%, respectively. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was very effective for indoor air purification.

A Study on the Influence of the Water System on the Location and Spatial Structure of Hongju-seong (수체계가 홍주성의 입지와 공간구조 변천과정에 미친 영향)

  • Lee, Kyung-Chan;Kang, In-Ae
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The purpose of this study is to analyze the influence of the water system on the location, spatial structure, and construction method of Hongju-eupseong, centering on Hongjumok-eupchi. During the Joseon Dynasty, the water system in Hongjumok-eupchi is composed of artificially constructed Seong-an Runnel and ponds based on a branch-shaped natural waterways flowing from south to north and west to east. Compiling the results of various literature records, excavations and analysis of map data, it can be seen that the water system has an important influence on the construction of Hongju-seong. Firstly, Hongju-seong from the Goryeo Dynasty to the late Joseon Dynasty is located using a circular shape of topographical structure and a small erosion basin formed on the inner side of the Hongseongcheon and Wolgyecheon streams without significant change in location. In particular, Wolgyecheon and Hongseongcheon are natural moats, which are harmonized with Sohyangcheon and riverside topographical structures, affecting the location and construction method of Hongju-seong, water related facilities, and the spatial structure of eupseong. It is understood that location characteristic of Hongju-seong reflects the urban location structure harmonized with waterways in ancient China and Korea. Secondly in harmony with the water system and topographic structure of Hongju-seong, it is an important factor in deciding the land use of the town, the arrangement of the town hall facilities and inducing various non-subsidiary measures such as the establishment of embankment forest with a secret function and the closure of the south gate. In addition, artificial drainage facilities such as Seongan runnel and ponds are being actively introduced from early on to protect the walls or towns from flooding of Wolgyecheon. Especially there were typical methods for protecting the walls from water damage such as the Joseon Dynasty stone castle structure that was integrated with saturn(soil wall) in the Goryeo Dynasty, retreating wall in the northern gate area in the late Joseon Dynasty, and the method of constructing wall using korean tile and stone floors between reinforced soil layers in the western and northern wall.

Determination of equivalent elastic modulus of shotcrete-tetragonal lattice girder composite (사변형 격자지보재-숏크리트 합성부재의 등가물성 결정 기법)

  • Kang, Kyung-Nam;Song, Ki-Il;Kim, Sun Gil;Kim, Kyoung Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Steel set is a structure that stabilize the NATM tunnel until the installation of shotcrete, and it is combined after the shotcrete is installed to improve stability. In this study, determination approach for the equivalent elastic modulus of shotcrete-lattice girder composite is newly suggested for tunneling simulation. Also, a method was presented to calibrate the equivalent elastic modulus through the comparison of the full 3D model and equivalent model. When the conventional equivalent elastic modulus is used for shotcrete-lattice girder composite, the flexural strength of equivalent model is 130% smaller than that of full 3D model. Equivalent elastic modulus is adjusted considering the error of flexural strength. It is found that the error of flexural strength obtained from adjusted equivalent model using adjusted equivalent elastic modulus is reduced less than 1%.

Dynamic Characteristics on the CRDM of SMART Reactor (SMART 원자로 제어봉 구동 장치의 동특성해석)

  • Lee, Jang-Won;Cho, Sang-Soon;Kim, Dong-Ok;Park, Jin-Seok;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1105-1111
    • /
    • 2010
  • The Korea Atomic Energy Research Institutes has been developing the SMART (System integrated Modular Advanced ReacTor), an environment-friendly nuclear reactor for the generation of electricity and to perform desalination. SMART reactors can be exposed to various external and internal loads caused by seismic and coolant flows. The CRDM(control rod drive mechanism), one of structures of the SMART, is a component which is adjusting inserting amount of a control rod, controlling output of reactor power and in an emergency situation, inserting a control rod to stop the reactor. The purpose of this research is performing the analysis of dynamic characteristic to ensure safety and integrity of structure of CRDM. This paper presents two FE-models, 3-D solid model and simplified Beam model of the CRDM in the coolant, and then compared the results of the dynamic characteristic about the two FE-models using a commercial Finite Element tool, ABAQUS CAE V6.8 and ANSYS V12. Beam 4 and beam 188 of simplified-model were also compared each other. And simplified model is updated for accuracy compare to 3-D solid.