• Title/Summary/Keyword: 일차냉각수 응력부식균열

Search Result 4, Processing Time 0.015 seconds

Sensitivity Analysis of Nozzle Geometry Variables for Estimating Residual Stress in RPV CRDM Penetration Nozzle (원자로 상부헤드 관통노즐의 잔류응력 예측을 위한 노즐 형상 변수 민감도 연구)

  • Bae, Hong Yeol;Oh, Chang Young;Kim, Yun Jae;Kim, Kwon Hee;Chae, Soo Won;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.387-395
    • /
    • 2013
  • Recently, several circumferential cracks were found in the control rod drive mechanism (CRDM) nozzles of U.S. nuclear power plants. According to the accident analyses, coolant leaks were caused by primary water stress corrosion cracking (PWSCC). The tensile residual stresses caused by welding, corrosion sensitive materials, and boric acid solution cause PWSCC. Therefore, an exact estimation of the residual stress is important for reliable operation. In this study, finite element simulations were conducted to investigate the effects of the tube geometry (thickness and radius) on the residual stresses in a J-groove weld for different CRDM tube locations. Two different tube locations were considered (center-hole and steepest side hill tube), and the tube radius and thickness variables ($r_o/t$=2, 3, 4) included two different reference values ($r_o$=51.6, t=16.9mm).

Alloy 600 Components Inspection Prioritization Using the Normalized PWSCC Susceptibility Index (정규화된 PWSCC 민감도 지수를 이용한 Alloy 600 기기 검사 우선순위 선정)

  • Kim, Tae Ryong;Kim, Hyung Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • Alloy 600 widely used in nuclear power plant is susceptible to primary water stress corrosion cracking (PWSCC). It is important to prioritize the inspection of Alloy 600 components using PWSCC susceptibility index. Plant-specific model for the susceptibility index was reviewed. The normalized PWSCC susceptibility index to a reference value is suggested and applied. The result was found to be reasonable.

Effect of Normal Operating Condition Analysis Method for Weld Residual Stress of CRDM Nozzle in Reactor Pressure Vessel (원전 정상가동조건 적용 방식이 원자로 압력용기 상부헤드 관통 노즐의 용접 잔류응력에 미치는 영향)

  • Nam, Hyun Suk;Bae, Hong Yeol;Oh, Chang Young;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1159-1168
    • /
    • 2013
  • In pressurized water nuclear reactors (PWRs), the reactor pressure vessel (RPV) upper head contains penetration nozzles that use a control rod drive mechanism (CRDM). The penetration nozzle uses J-groove weld geometry. Recently, the occurrence of cracking in alloy 600 CRDM penetration nozzle has increased. This is attributable to primary water stress corrosion cracking (PWSCC). PWSCC is known to be susceptible to the welding residual stress and operational stress. Generally, the tensile residual stress is the main factor contributing to crack growth. Therefore, this study investigates the effect on weld residual stress through different analysis methods for normal operating conditions using finite element analysis. In addition, this study also considers the effect of repeated normal operating condition cycles on the weld residual stress. Based on the analysis result, this paper presents a normal operating condition analysis method.

Sensitivity Analysis of Finite Element Parameters for Estimating Residual Stress of J-Groove Weld in RPV CRDM Penetration Nozzle (원자로 CRDM 관통노즐 J-Groove 용접부 잔류응력 예측을 위한 유한요소 변수 민감도 해석)

  • Bae, Hong-Yeol;Kim, Ju-Hee;Kim, Yun-Jae;Oh, Chang-Young;Kim, Ji-Soo;Lee, Sung-Ho;Lee, Kyoung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1115-1130
    • /
    • 2012
  • In nuclear power plants, the reactor pressure vessel (RPV) upper head control rod drive mechanism (CRDM) penetration nozzles are fabricated using J-groove weld geometry. Recently, the incidences of cracking in Alloy 600 CRDM nozzles and their associated welds have increased significantly. The cracking mechanism has been attributed to primary water stress corrosion cracking (PWSCC), and it has been shown to be driven by welding residual stresses and operational stresses in the weld region. The weld-induced residual stress is the main factor contributing to crack growth. Therefore, an exact estimation of the residual stress is important for ensuring reliable operation. This study presents the residual stress computation performed for an RPV CRDM penetration nozzle in Korea. Based on two and three dimensional finite element analyses, the effect of welding variables on the residual stress variation is estimated for sensitivity analysis.