• Title/Summary/Keyword: 일정응력확대계수범위

Search Result 7, Processing Time 0.021 seconds

Effect of Specimen Orientation on Fatigue Crack Growth Behavior in Friction Stir Welded Al7075-T651 Joints (마찰교반용접된 Al7075-T651 용접부의 피로균열전파 거동에 미치는 시험편 채취방향의 영향)

  • Jeong, Yeui Han;Kim, Seon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1317-1323
    • /
    • 2014
  • The aim of this paper is to investigate the effects of crack orientation on fatigue crack growth behavior in friction stir welded (FSWed) Al 7075-T651. Fatigue crack growth testing was conducted on compact tension (CT) specimens machined from the friction stir welds and the base metal under constant stress intensity factor range control. Tests were performed with the crack propagating nominally perpendicular to the weld line (termed the TL specimen) and the crack propagating in a parallel direction of the weld line (termed the LT specimen), and with three different constant stress intensity factor ranges. Both these specimen orientations were found to have a considerable effect on the fatigue crack growth behavior. Paris's law was adopted for the analysis of experimental results; the exponent m of the WM-LT specimen was determined to be 3.56, which was the largest value in this experimental conditions.

Experimental Investigation of Fatigue Crack Growth Behavior in Friction Stir Welded 7075-T651 Aluminum Alloy Joints under Constant Stress Intensity Factor Range Control Testing (For LT Orientation Specimen) (일정 응력확대계수범위 제어 시험하의 마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파 거동의 실험적 고찰 (LT 방향의 시험편에 대하여))

  • Jeong, Yeui Han;Kim, Seon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.775-782
    • /
    • 2013
  • In this study, as a series of studies aimed at investigating the spatial randomness of fatigue crack growth for friction stir welded (FSWed) 7075-T651 aluminum alloy joints, the fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy joints was investigated for LT orientation specimens. Fatigue crack growth tests were conducted under constant stress intensity factor range (SIFR) control for 5 specimens of the FSWed 7075-T651 aluminum alloy, including base metal (BM), heat affected zone (HAZ), and weld metal (WM) specimens. The mean fatigue crack growth rate of WM specimens was found to be the highest, whereas that of HAZ and WM specimens was the lowest. Furthermore, the variability of fatigue crack growth rate was found to be the highest in WM specimens and lowest in BM specimens.

A Quantitative Analysis of ΔK Conversion Method for the Retardation Behavior of Fatigue Crack Growth in Varying Thickness of Al 2024-T3 Sheet Alloy (판재 Al 2024-T3 합금재료에서 나타나는 두께별 피로균열진전지연거동에 관한 ΔK환산법의 정량적분)

  • Kim, Seung-Gwon;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1415-1422
    • /
    • 2011
  • Sheet aluminum alloys used in manufacturing of machine structures for transportation show the difference of crack growth speed depending on thickness under the constant fatigue stress condition. The referred thickness effect is a major fatigue failure property of sheet aluminum alloys. In this work, we identified the thickness effect in fatigue test of thick plate and thin plate of Al 2024-T3 alloy under the constant fatigue stress condition, and presented the thickness effect to a correlative equation, $U_{i}^{equ}=f(R_t)$ which is determined by the shape factor, thickness ratio, $R_t$ and the loading factor, equivalent effective stress intensity ratio depending on thickness, $U_{i}^{equ}$. And we analyzed quantitatively the crack growth retardation behavior in thin plate compared to thick plate by the thickness effect using ${\Delta}K$ conversion method. We obtained such values as decrement of thickness(DoT), decrement of stress intensity factor range, ${\Delta}K$ (DoS) and identified the relation between them to present the nature of thickness effect in this work.

A Study on the Fatigue Characteristics of Transverse Butt-Welded Joints containing Blowholes (블로우홀을 가진 횡방향 맞대기 용접부의 피로특성에 관한 연구)

  • Chang, Dong Il;Kyung, Kab Soo;Cho, Kwang Hyun;Hong, Sung Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.339-350
    • /
    • 1999
  • In this study, blowholes, a kind of solid defects, were intentionally introduced in transverse butt-welded joints which are widely used for the connection of main members in steel structures to evaluate the fatigue characteristics of these joints with blowholes according to the difference of the size and shape of blowholes, and a series of tests were performed. Static test results proved that the static strength of these joints with blowholes was not affected by their size and shape. From the fatigue test results on these joints with blowholes, the size and shape of blowholes inside the weld metals were strongly affected in fatigue strength, and we suggested the relationship between fatigue strength and their size and shape quantitatively. Also, Using the relationship of fatigue crack growth rate and stress intensity factor range, the fatigue life of transverse butt-welded joints with blowholes can be estimated properly.

  • PDF

Spatial Randomness of Fatigue Crack Growth Rate in Friction Stir Welded 7075-T651 Aluminum Alloy Welded Joints (Case of LT Orientation Specimen) (마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 불규칙성 (LT 방향의 시험편에 대하여))

  • Jeong, Yeui Han;Kim, Seon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1109-1116
    • /
    • 2013
  • This study aims to investigate the spatial randomness of fatigue crack growth rate for the friction stir welded (FSWed) 7075-T651 aluminum alloy joints. Our previous fatigue crack growth test data are adopted in this investigation. To clearly understand the spatial randomness of fatigue crack growth rate, fatigue crack growth tests were conducted under constant stress intensity factor range (SIFR) control testing. The experimental data were analyzed for two different materials-base metal (BM) and weld metal (WM)-to investigate the effects of spatial randomness of fatigue crack growth rate and material properties, the friction stir welded (FSWed) 7075-T651 aluminum alloy joints, namely weld metal (WM) and base metal (BM). The results showed that the variability, as evaluated by Weibull statistical analysis, of the WM is higher than that of the BM.

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.67-75
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit panicle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20$^{\circ}$~40$^{\circ}$. In condition that the loading angle is 20$^{\circ}$, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than I mm and loading rate less than 0.01 mm/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian 시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.320-328
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit particle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20°∼40°. In condition that the loading angle is 20°, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than 1 mm and loading rate less than 0.01㎜/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF