• Title/Summary/Keyword: 일사 관측

Search Result 161, Processing Time 0.021 seconds

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.

Heat Balance Characteristics and Water Use Efficiency of Soybean Community (콩군낙(群落)의 열수지특성(熱收支特性)과 건물(乾物)로의 물이용효율(利用效率))

  • Lee, Yang-Soo;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.94-99
    • /
    • 1990
  • A field experiment was conducted to study seasonal evapotranspiration above soybean canopy and its relationship with dry matter production by the Bowen ratio-energy balance method. The soybean "Paldalkong" was sown with the space of $47{\times}10cm$ at Suwon on May 27, 1988. The daily net radiation ranged from 59 to 76 percents of the total shortwave radiation under cloudless conditions, which was lower than cloud overcast condition with recorded 63 to 83 percents. The latent heat flux under overcast condition was sometimes larger than the sum of net radiation, implying transportation of energy by advection of ambient air. The linear relationship was obtained between daily or daytime net radiation and evapotranspiration. The evapotranspiration calculated by Bowen ratio-energy balance method was about 150 percent of class A pan evaporation during the growing season. The total solar radiation from June 20 to August 27 was $1043MJm^{-2}$. The 85 percent of the total shortwave radiation was used for evaporative heat. The dry matter production within the period was $836gm^{-2}$ and the water use efficiency was $2.31gDM\;kg^{-1}\;H_2O$.

  • PDF

Classification of Agro-climatic zones in Northeast District of China (중국 동북지역의 농업기후지대 구분)

  • Jung, Myung-Pyo;Hur, Jina;Park, Hye-Jin;Shim, Kyo-Moon;Ahn, Joong-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.102-107
    • /
    • 2015
  • This study was conducted to classify agro-climatic zones in Northeast district of China. For agro-climatic zoning, monthly mean temperature and precipitation data from Global Modeling and Assimilation Office (GMAO) of National Aeronautics and Space Administration (NASA, USA) between 1979 and 2010 (http://disc.sci.gsfc.nasa.gov/) were collected. Altitude and vegetation fraction of East Asia from Weather Research and Forecasting (WRF) were also used to classify them. The criteria of agro-climatic classification were altitude (200 m, between 200-800 m, 800 m), vegetation fraction (60%), annual mean temperature ($0^{\circ}C$), temperature in the hottest month ($22^{\circ}C$), and annual precipitation (700 mm). In Northeast district of China, mean annual temperature, annual precipitation, and solar radiation were $3.4^{\circ}C$, 613.2 mm, and $4,414.2MJ/m^2$ between 2009 and 2013, respectively. Twenty-two agro-climatic zones identified in Northeast district of China by metrics classification method, from which the map of agro-climatic zones for Northeast district of China was derived. The results could be useful as information for estimating agro-meteorological characteristics and predicting crop development and crop yield of Northeast district of China as well as those of North Korea.

$CO_2$ and Water Vapor Flux Measurement by Eddy Covariance Method in a Paddy Field in Korea (한반도 논에서의 에디공분산 방법에 의한 $CO_2$와 수증기 플럭스 관측)

  • Lee Jeongtaek;Lee Yangsoo;Kim Gunyeob;Shim Kyomoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2005
  • This study was conducted to measure and understand the exchange of CO₂ and water in a rice canopy. Eddy covariance system was installed on a 10m tower along with other meteorological instruments. CO₂ flux and surface energy balance were measured throughout the whole growing season in 2003 over a typical paddy field in Icheon, Korea. During the early growth stage in May and June, most of net radiation was partitioned to latent heat flux with daytime Bowen ratio of 0.3 to 0.7. Evapotranspiration (i.e., daily integrated latent heat flux) typically ranged from 3 to 4 mm d/sup -1/, with even higher rates on sunny days. Daily integrated net ecosystem exchange (NEE) of CO₂ increased with increasing solar radiation and leaf area index (LAI). The NEE was especially high during the stages of young panicle formation and heading. On 1 June 2003, when the rice field was flooded, it was a weak sink of atmospheric CO₂ with an uptake rate of 9.1 gm/sup -2/d/sup -1/. Despite frequent rainy and cloudy conditions in summer, maximum NEE of 36.2 gm/sup -2/d/sup -1/ occurred on 31 July prior to heading stage. As rice crop senesced after early September, the NEE decreased.

Spatial panel analysis for PM2.5 concentrations in Korea (공간패널모형을 이용한 국내 초미세먼지 농도에 대한 분석)

  • Lee, Jong Hyun;Kim, Young Min;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.473-481
    • /
    • 2017
  • It is well known that the air quality of 92% of the world is known to exceed the standard of WTO and the death caused by air pollution is almost 6 million per year. The $PM_{2.5}$ concentration in Korea is the second most serious among the OECD countries following Turkey. Since the $PM_{2.5}$ has a direct effect on the respiratory system, it has been actively studied in domestic and foreign countries. But current research on the $PM_{2.5}$ is limited in weather factor or air pollutants. In this paper, we consider the influence of spatial neighbor with weather factor or air pollutants using spatial panel model. We applied the proposed method to 25 borough of Seoul in Korea. The result shows a significant effect of spatial neighbor on the $PM_{2.5}$ concentration fields.

A LSTM Based Method for Photovoltaic Power Prediction in Peak Times Without Future Meteorological Information (미래 기상정보를 사용하지 않는 LSTM 기반의 피크시간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.4
    • /
    • pp.119-133
    • /
    • 2019
  • Recently, the importance prediction of photovoltaic power (PV) is considered as an essential function for scheduling adjustments, deciding on storage size, and overall planning for stable operation of PV facility systems. In particular, since most of PV power is generated in peak time, PV power prediction in a peak time is required for the PV system operators that enable to maximize revenue and sustainable electricity quantity. Moreover, Prediction of the PV power output in peak time without meteorological information such as solar radiation, cloudiness, the temperature is considered a challenging problem because it has limitations that the PV power was predicted by using predicted uncertain meteorological information in a wide range of areas in previous studies. Therefore, this paper proposes the LSTM (Long-Short Term Memory) based the PV power prediction model only using the meteorological, seasonal, and the before the obtained PV power before peak time. In this paper, the experiment results based on the proposed model using the real-world data shows the superior performance, which showed a positive impact on improving the PV power in a peak time forecast performance targeted in this study.

Parameter Regionalization of Hargreaves Equation Based on Climatological Characteristics in Korea (우리나라 기후특성을 고려한 Hargreaves 공식의 매개변수 지역화)

  • Moon, Jang Won;Jung, Chung Gil;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.933-946
    • /
    • 2013
  • The quantitative analysis of evapotranspiration (ET) is a key component in hydrological studies and the establishment of water resources planning. Generally, the quantitative analysis of ET is performed by the estimation method of potential or reference ET based on meteorological factors such as air temperature, wind speed, etc. Hargreaves equation is one of empirical methods for reference ET using air temperature data. In this study, in order to estimate more exact reference ET considering climatological characteristics in Korea, parameter regionalization of Hargreaves equation is carried out. Firstly, modified Hargreaves equation is presented after the analysis of the relationship between solar radiation and temperature. Secondly, parameter ($K_{ET}$) optimization of Hargreaves equation is performed using Penman-Monteith method and modified equation at 71 weather stations. Lastly, the equation for calculating $K_{ET}$ using temperature data is proposed and verified. As a result, reference ET from original Hargreaves equation is overestimated or underestimated compared with Penman-Monteith method. But modified equation in this study is more accurate in the climatic conditions of Korea. In addition, the applicability of the equation between $K_{ET}$ and temperature is confirmed.

Comparison of Characteristics of Local Meteorological and Particulate Matter(TSP) on the Beopjusa Temple and Seonamsa Temple (법주사와 선암사의 국지 기상 및 미세먼지 특성 비교)

  • Kim, Myoung Nam;Lim, Bo A;Lee, Myeong Seong;Jeong, So Young
    • Journal of Conservation Science
    • /
    • v.33 no.4
    • /
    • pp.283-295
    • /
    • 2017
  • It is crucial to measure meteorological elements in relation to the biodeterioration of building cultural heritages. The Beopjusa and Seonamsa temples located respectively in Chungbuk and Jeonnam provinces, Korea, exhibit biological damage to the building cultural heritages and cause noticeable climatic differences. To compare biodeterioration environments of the abovementioned temples, 10 meteorological elements were observed, and particulate matter (TSP) was collected at each location. Furthermore, a correlation analysis was conducted between meteorological elements, and between meteorological elements and TSP. The local meteorology at Beopjusa temple characteristically showcased high total horizontal radiation, UV radiation, evaporation, wind speed, and TSP concentration, whereas, that at Seonamsa temple showcased high temperature, humidity, dew point temperature, air pressure, precipitation and number of days with precipitation. An elemental analysis of TSP revealed the presence of sae-salts at Seonamsa temple, and compared to that of Beopjusa temple, the monthly frequencies of biogenic aerosol and Fe-containing particles were higher. The correlation analysis showed that wind speed and humidity were major meteorological factors at Beopjusa and Seonamsa temples, respectively. Subsequently, the characteristics of the local meteorology at Seonamsa temple are expected to affect the biological damage of the building cultural heritages, which is favorable for the growth of various organisms.

A Study on the Possibility of Geothermal Resources Assessment Using Landsat 7 ETM+ (Landsat 7 ETM+를 이용한 지열자원 평가 가능성 연구)

  • Oh, Il-Hwan;Lee, Tae-Jong;Kim, Kwang-Eun;Suh, Man-Cheol;Hong, Suk-Young
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.113-118
    • /
    • 2008
  • 본 연구는 Landsat 7 ETM+를 이용한 지열자원 평가 가능성 연구로써, 위성영상의 열적외 밴드에서 추출된 지표온도와 지열자료의 비교를 통해 위성영상이 초기 지열 탐사에 적용 가능한지를 평가하기 위하여 실시하였다. 지열자원 부존 가능성 평가를 위해 경상도지역(114-35)의 여름시기영상(2001년8월24일)과 겨울시기영상(2000년3월14일)사이의 DN(Digital Number) 값을 이용하였으며, 두 시기영상은 시추공 온도자료 및 지형자료와 함께 비교 분석을 실시하였다. 영상에서 지표온도 추출을 위해 1) NASA에서 제공하는 지표온도 산출 경험식 ( T = K $_2$ / ln ( K $_1$ / L $_{\lambda}$ + 1 ) )을 이용한 방법과 2) 기상청에서 제공하는 실제 지표면온도 관측자료(n=7)를 이용해 영상의 화소(Pixel) 값을 계산하여 실측값과 비교하였다. 3월과 8월 모두 Ground Truth 방법에 따라 추정한 지표면 온도값이 실측값과 더 가깝게 나타났고, 특히 3월은 NASA의 경험식을 이용했을 때 보다 실측 지표면 온도에 훨씬 더 가까운 것으로 나타났다. 지표온도의 일변화(Diurnal ${\triangle}$T)는 지표 열물성과 밀접한 관련이 있으므로, 일변화(Diurnal ${\triangle}$T) 보다는 지열의 영향이 더 클 것으로 기대되는 계절변화(Seasonal ${\triangle}$T)를 이용하여 지열 자료와 비교해 보았다. 그 결과, 계절변화(Seasonal ${\triangle}$T)는 고도에 영향을 받으며, 일사량에 의한 차이는 거의 일정하게 나타났다. 위성영상에서 계절변화(Seasonal ${\triangle}$T)와 심도 20m 온도를 비교해 본 결과결정계수(R$^2$)는 0.46으로 낮지만 심도 20m 온도가 높을수록 계절변화(Seasonal ${\triangle}$T)는 작아지는 경향을 보여 지열자원 탐사에 있어 위성영상 적용 가능성을 볼 수 있었다. 이번 연구는 기초단계로서 두 시기 위성영상을 이용하여 초기 지열자원탐사에 가능성만을 연구했지만, 지형과 특히 토지피복(함수량 등)에 의한 영향에 대해 좀 더 심도 있는 연구가 요구된다.

  • PDF

Mapping Monthly Temperature Normals Across North Korea at a Landscape Scale (북한지역 평년의 경관규모 기온분포도 제작)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • This study was carried out to estimate monthly mean of daily maximum and minimum temperature across North Korea at a 30 m grid spacing for a climatological normal year (1971-2000) and the 4 decadal averages (1971-1980, 1981-1990, 1991-2000, and 2001-2010). A geospatial climate interpolation method, which has been successfully used to produce the so-called 'High-Definition Digital Climate Maps' (HD-DCM), was used in conjunction with the 27 North Korean and 17 South Korean synoptic data. Correction modules including local effects of cold air drainage, thermal belt, ocean, solar irradiance and urban heat island were applied to adjust the synoptic temperature data in addition to the lapse rate correction. According to the final temperature estimates for a normal year, North Korean winter is expected colder than South Korean winter by $7^{\circ}C$ in average, while the spatial mean summer temperature is lower by $3^{\circ}C$ than that for South Korea. Warming trend in North Korea for the recent 40 years (1971-2010) was most remarkable in spring and fall, showing a 7.4% increase in the land area with 15 or higher daily maximum temperature for April.