• 제목/요약/키워드: 일변량 정규분포

검색결과 12건 처리시간 0.023초

다변량 정규성검정을 위한 근사 SHAPIRO-WILK 통계량의 일반화

  • 김남현
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.243-248
    • /
    • 2003
  • Fattorini(1986)의 통계량은 Shapiro와 Wilk의 일변량 정규분포를 위한 검정통계량을 다변량으로 확장한 것이다. 본 논문에서는 Kim과 Bickel(2003)에서 제안한 이변량 정규분포를 위한 검정통계량을 Fattorini(1986)의 방법을 이용하여 이변량 이상인 경우에도 실제적으로 사용가능하도록 일반화하였다. 제안된 통계량은 Fattorini(1986) 통계량의 근사통계량으로 생각할 수 있으며 표본의 크기가 클 때도 사용가능하다.

  • PDF

다변량 정규성검정을 위한 근사 SHAPIRO-WILK 통계량의 일반화 (An Approximate Shapiro -Wilk Statistic for Testing Multivariate Normality)

  • 김남현
    • 응용통계연구
    • /
    • 제17권1호
    • /
    • pp.35-47
    • /
    • 2004
  • 본 논문에서는 Kim & Bickel(2003)에서 제안한 이변량 정규분포를 위한 검정통계량을 Fattorini(1986)의 방법을 이용하여 이변량 이상인 경우에도 실제적으로 사용가능 하도록 일반화하였다. Fattorini(1986)의 통계량은 Shapiro & Wilk(1965)의 일변량 정규분포를 위한 검정통계량을 다변량으로 확장한 것이다. 그리고 제안된 통계량은 Fat-torini(1986) 통계량의 근사통계량으로 생각할 수 있으며 표본의 크기가 클 때도 사용 가능하다. 또한 모의실험을 통하여 여러 가지 대립가설에서 기존의 통계량과의 검정력을 비교하였다.

정규확률변수 관측치열에 대한 베이지안 변화점 분석 : 서울지역 겨울철 평균기온 자료에의 적용 (Bayesian Change Point Analysis for a Sequence of Normal Observations: Application to the Winter Average Temperature in Seoul)

  • 김경숙;손영숙
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.281-301
    • /
    • 2004
  • 본 논문에서는 일변량 정규분포를 따르는 확률변수의 관측치열에 대한 변화점 문제(change point problem)를 고찰한다. 변화점의 존재유무, 그리고 만일 변화점이 존재한다면 어떠한 유형으로 발생했는지 즉, 변화점 발생 이후로 평균만 변화, 분산만 변화, 또는 평균과 분산 모두가 변화했는지를 밝힌다. 가능한 여러 유형의 변화모형들 가운데 최적의 모형을 선택하기 위해 베이지안 모형선택 기법을 이용하고, 선택된 모형에 내재된 모수를 추정 하기 위해 메트로폴리스-혜스팅스 알고리 즘을 포함한 깁스샘플링 을 이용한다. 이러한 방법론은 모의실험을 통해 검토되고, 또한 서울지역의 겨울철 평균기온 자료에 적용된다.

다변량 정규분포에서의 선발효과(I): 유전편차의 비율에 대하여 (Genetic Selection Problems under Multivariate Normal Distribution)

  • 신한풍
    • Journal of the Korean Statistical Society
    • /
    • 제3권1호
    • /
    • pp.59-63
    • /
    • 1974
  • 표현형 변수 Y가 유전변수 X와 환경변수 E로 표시되고 X와 E가 상호독립이며 각각 다음과 같은 정규분포를 한다고 하자. $$X\simN(\mu,\sigma^2), E\simN)0,\omega^2)$$ 대체로 $Y \geq y$이거나 $Y \leq y$인 형태일 때 유전 및 육동적 선발은 Y=X+E의 형태로 나타난다. 롭슨[3]은 선발을 반복하였을 때 유전변수 X의 평균기대치와 유전변수 X의 조건부분포의 영향을 연구하였고 이와같은 일변량분포의 경우 선발의 효과는 전분산에 대한 유전분산의 비에 달려있다 하였다. 이러한 선발모형을 p-차원 공간에 적용하면 유전편차의 비율을 구할 수 있다.

  • PDF

가중 포트폴리오에서의 CTE (CTE with weighted portfolios)

  • 홍종선;신동식;김재영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권1호
    • /
    • pp.119-130
    • /
    • 2017
  • 다변량 분포에서의 VaR (Value at Risk)와 CTE (Conditional Tail Expectation)에 관한 많은 연구문헌에서는 특정한 포트폴리오 구성비를 이용하여 일변량 분포로 변환하여 추정하였다. 다변량 분포에서 분위수에 관한 많은 연구가 존재한다. 그러나 분위수가 유일하게 존재하지 않으므로, VaR와 CTE의 추정에 어려움이 있다. 본 연구에서는 다변량 분위 벡터를 이용한 대안적인 VaR와 통합적인 다변량 CTE의 연구를 확장하여, 여러 종류의 포트폴리오로 구성된 다양한 비율 조합에 따른 가중 CTE 벡터들을 제안한다. 일변량에 대한 CTE 관계식을 다차원의 관계식으로 확장하고, 일변량의 관계식과의 특징과 차이점에 대하여 토론한다. 정규분포로부터 추출한 자료와 실증 예제를 통하여 본 연구에서 제안한 가중 CTE를 탐색하면서 가중 CTE의 활용성과 장점을 유도한다.

이변수 해석적 확률모형을 적용한 우리나라 유출량 예측 연구 (A study of predicting runoff volume applying a two-parameter analytical probabilistic model for South Korea)

  • 이문영;안희진;전설;김시연;민인경;박대룡
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.201-201
    • /
    • 2022
  • 본 연구에서는 강우량이 여름에 집중되어있는 우리나라의 강우 특성을 잘 나타낼 수 있는 최적의 확률분포형을 선정하고 해석적 확률모델 (Analytical Probabilistic Model, APM)을 개발하여 유출량을 예측하고자 하였다. 국내 10개 지역인 부산, 춘천, 대구, 대전, 전주, 진주, 서울, 속초, 태백, 원주를 연구 지역으로 설정하였고, 30년 시 단위 강우자료를 지역별 interevent time definition(IETD)을 적용하여 강우 사상으로 그룹화하였다. APM 연구에 일반적으로 사용되는 일변수 지수 분포 이외의 이변수 지수, 감마, 이변수 로그정규 확률밀도함수 (Probability Density Function, PDF)를 강우사상의 특성인 강우량, 강우 지속시간, 무강우 시간의 히스토그램에 적용한 결과, 이 변수 로그정규분포가 우리나라의 강우 특성을 가장 잘 대표하였다. 로그정규분포를 이용하여 APM을 유도하고 유출량을 예측하였다. 예측한 유출량에 대한 빈도분석을 수행하여 Storm Water Management Model (SWMM)의 결과와 비교함으로써 유도한 APM의 적합성을 확인하였다. SWMM의 입력 매개변수 보정을 위해서는 서울 군자 지역에서 관측한 실제 강우량 및 유출량 자료를 사용하였다. 로그정규분포로 유도한 APM과 SWMM의 빈도분석 결과를 비교하였을 때 초과 확률과 재현주기 모두 매우 유사한 결과를 나타내었음을 확인하였다.

  • PDF

다변량 정규분포에서 대안적인 VaR의 특성 (Properties of alternative VaR for multivariate normal distributions)

  • 홍종선;이기쁨
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1453-1463
    • /
    • 2016
  • 가장 선호하는 금융위험 측정 방법은 통계적으로 최대손실금액을 추정하는 VaR (Value at Risk)이다. 포트폴리오를 구성하는 여러 산업에 대한 VaR (Value at Risk)는 분산공분산 행렬과 특정한 포트폴리오가 포함되어 변환된 일변량 위험을 이용하여 추정한다. Hong 등 (2016)은 다변량 분위벡터를 바탕으로 Vector at Risk를 정의하였으며, 특정한 포트폴리오가 설정되면 Vector at Risk 중의 한 점을 최적의 VaR 즉, 대안적인 VaR (AVaR)로 제안하였다. 본 연구에서는 다변량 정규분포에 대하여 AVaR의 특성을 탐색한다. 여러 종류의 분산공분산 행렬과 다양한 포트폴리오 가중값 벡터인 경우의 이변량과 삼변량의 정규분포를 따르는 모의실험 자료와 실증예제를 이용하여 대안적인 최대손실금액인 AVaR을 구하고 VaR과 비교 분석한다. 다변량 분위벡터를 이용한 AVaR는 VaR보다 작게 추정함을 발견하였으며, 이런 특징과 함께 AVaR의 특성을 토론한다.

이변량 ROC곡선 (Bivariate ROC Curve)

  • 홍종선;김강천;정진아
    • Communications for Statistical Applications and Methods
    • /
    • 제19권2호
    • /
    • pp.277-286
    • /
    • 2012
  • 신용평가모형에서 부도로 잘못 예측된 정상 차주의 비율과 정확하게 평가된 부도차주의 비율인 일변량 누적분포함수로 표현된 ROC 곡선을 이용하여 분류성과를 평가한다. 본 연구에서는 스코어 확률변수를 이변량으로 확장하여 부도와 정상 차주의 결합누적분포함수를 이용하여 표현할 수 있는 ROC 곡선을 제안한다. 이변량 평균벡터를 통과하는 확률변수의 선형 관계를 이용하여 이변량 ROC 곡선을 구현한다. 그리고 다양한 이변량 정규분포에 대한 ROC 곡선으로부터 분류성과를 탐색하고, 이에 대응하는 AUROC 통계량과 비교분석한다. 본 연구에서 제안한 이변량 ROC 곡선으로부터 분류기준에 적합한 최적분류점을 구하고 이를 통해 이변량 혼합분포함수의 최적 분류기준을 설정할 수 있음을 보인다.

다변량 경험분포함수와 시각적인 표현방법 (Multivariate empirical distribution functions and descriptive methods)

  • 홍종선;박준;박용호
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권1호
    • /
    • pp.87-98
    • /
    • 2017
  • 일변량 이상의 다변량 경험분포함수의 정의를 새롭게 제안하고, 경험분포함수의 기대값과 분산을 유도하면서 다변량 경험분포함수가 실제의 분포함수로 수렴함을 확인한다. 그리고 다양한 상관계수의 이변량 표준정규분포에서 추출한 확률표본을 바탕으로 이변량 경험분포함수를 구하고 이를 이차원 평면에 시각적으로 표현하는 두 종류의 그래픽적인 방법을 제안한다. 하나는 계단으로 표현하여 계단식 함수와 유사한 성격을 갖고 있는 방법이고, 다른 하나는 이변량 분위벡터로 설명되는 그림 방법이다. 두 종류의 시각적인 표현 방법은 삼차원으로 표현할 수 있으나 이차원 평면으로도 쉽게 구현이 가능하며, 일반적으로 이변량 누적분포함수의 모든 특징을 충분히 설명할 수 있다. 따라서 삼변량 경험분포함수를 시각적 표현이 가능함을 보인다. 이변량과 사변량의 실증 예제를 통하여 본 연구에서 제안한 다변량 경험분포함수와 이차원 평면에 표현하는 시각적인 표현 방법들을 구현하고 탐색한다.

다변량 조건부 꼬리 기대값 (Multivariate conditional tail expectations)

  • 홍종선;김태우
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1201-1212
    • /
    • 2016
  • 시장위험 관리를 위한 Value at Risk(VaR)는 금융기관들이 선호하는 기법이지만, 투자가 실패한 경우에 손실금액에 대하여는 설명할 수 없다는 문제점이 있다. VaR의 한계를 보완하는 대안적인 위험측정도구인 Conditional Tail Expectation(CTE)는 VaR를 초과하는 조건부 기대값으로 정의된다. 포트폴리오에 대한 CTE를 추정하는 실제금융시장에서는. 일반적으로는 다변량 손실률을 일변량 분포로 변환하여 VaR을 추정하고 CTE를 구하지만, 본 연구에서는 다차원 분위벡터를 이용하여 다변량 CTE들을 제안한다. 그리고 일변량 CTE들의 관계를 확장하여 다변량 CTE들의 관계식을 유도하였다. 다양한 분산-공분산행렬을 갖는 이변량과 삼변량의 정규분포로부터 다변량 CTE들을 구하고 CTE들의 관계식을 구현하면서 고차원 분포로의 확장 가능성을 설명하였다. 이변량과 삼변량의 실증 예제를 통해 제안한 이론을 탐색하고, 기존의 CTE와 비교하였다. 다변량 변수들의 분산-공분산행렬과 다변량 분위벡터를 사용한 다변량 CTE가 일변량으로 변환하여 구한 CTE보다 작은 값을 갖는 것을 발견하였다. 그러므로 본 연구에서 제안한 다변량 CTE는 보다 적은 위험성을 나타내는 추정량이며, 포트폴리오를 구성하는 여러 기업을 동시에 고려하는 분산 투자 전략을 세우는 경우에 이런 다변량 CTE를 사용하는 적극적인 투자가 가능하다는 장점이 있다.