• Title/Summary/Keyword: 일방향 응고

Search Result 40, Processing Time 0.024 seconds

Research for refining processes to produce high-purity polycrystalline silicon from domestic quartzite mine (국내 규석광으로부터 고순도 실리콘 제조를 위한 정련 공정에 관한 연구)

  • Moon, Byung Moon;Kim, Gangjune;Koo, Hyun Jin;Park, Dong Ho;Yu, Tae U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.48-48
    • /
    • 2011
  • 2010년 약 19.5 GWp 의 규모로 성장한 태양광 시장의 주요 소재는 실리콘을 이용한 태양전지이며, 고성능 및 고효율 태양전지 시장이 급성장 하였다. 이러한 고품질 태양전지에 사용되는 주요 원료인 9N 급 폴리실리콘은 2008년 4월 $265/kg 까지 상승하였으나, 점차 하향안정세에 있으며, 급속한 가격 경쟁을 통해 당분간 장기공급가가 50$/kg 이하로 하락할 것으로 전망된다. 이러한 실리콘 제조기술 중 가장 많이 사용되는 기술은 Trichloro-silane (TCS) 또는 Mono-silane (MS)를 사용하는 기상법인 일명 Siemens 공정이다. 이러한 기상법의 경우 12N 이상의 초고품질 실리콘 제조가 가능하나, 대규모의 설비투자(1억원/폴리실리콘 1톤)와 높은 에너지(120 kWh/kg)가 요구된다. 이에 최근 기상법이 아닌 야금학적인 정련법에 대한 기술이 개발되고 있으며, 이는 금속 실리콘을 슬래그 처리, 편석 분리, 응고 급랭, 전자빔, 플라즈마 등을 이용하여 정련하는 공정을 말한다. 야금학적 정련법은 순도 면에서 기상법에 비하여 낮은 단점이 있음에도 불구하고, 여러 장점들로 인해 활발히 연구되며 점차 실용화 되고 있는 매우 유용한 기술이다. 야금학적 정련법의 주요 장점은 기상법에 비해 약 25% 정도의 설비 투자비로 가능하고, 금속 실리콘을 직접 사용하며, 에너지 payback이 짧다. 또한, 산 및 염화실렌을 사용하지 않으므로 환경 문제를 적게 야기하고, 생산설비의 확장성도 매우 높다. 본 연구에서는 국내 규석광을 이용하여 일련의 정련 공정을 거쳐 고순도SG(Solar Grade)급 실리콘을 제조하고자 하였다. 실리콘 용융 환원로를 개발하고 순도를 높이기 위해 슬래그정련법을 이용하였으며, 생산된 3N 급의 금속 실리콘을 비기상법정련 방식인 일방향 응고와 플라즈마 정련 및 전자기유도 용해법을 이용하여 고순도의 실리콘을 제조하였다. 본 연구에서는 상업생산을 개시한 외국의 E사와 비교하여 산침출공정을 거치지 않으므로 실리콘회수율 및 환경부하 절감의 장점을 갖고 있으며 최종 순도 실리콘 6N 이상, 보론 함유량 0.2 ppm 이하를 달성하였으며, 기존 기상법 대비 약 20%의 전력 감소와 약 13%의 금속실리콘 원료 절감 효과가 있었다. 저가/고순도 SG급실리콘의 제조기술 개발은 향후 세계 태양광 시장에 대한 경쟁력을 확보하고, 시장 점유율 상승에 기여할 수 있으며, 산업 확대를 통한 주변 산업으로의 파급 효과가 매우 클 것으로 예상된다.

  • PDF

The Effects of Sample Rotation on Cu-Dendritic Growth During the Directional Solidification of Pb-20wt%Cu Alloy (Pb-20wt%Cu 합금의 일방향 응고시 Cu 수지상 결정성장에 대한 시험편의 회전효과)

  • Kim, Shin-Woo
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.508-513
    • /
    • 1994
  • For Pb-20wt%Cu alloys, severe macrosegregation due to density difference of the resulting phases in normal directional solidification has been minimized and a uniformly aligned dendritic structure has been produced by axially rotating the sample of 5mm diameter in conjunction with horizontal directional solidification. Under the constant growth velocity of $20{\mu}m/sec$, increasing the rotation rate from 0.18 to 12rpm results in a transition from an aligned columnar to an equiaxed Cu-dendritic structure. With a constant rotation rate of 0.18rpm, increasing the growth velocity from 10 to $50{\mu}m/sec$ also has promoted a transition from columnar to equiaxed structure.

  • PDF

The structure and mechanical properties of unidirectionally solidified Al-Fe-Ni, Al-Fe-B alloy (일방향 응고시킨 Al-Fe-Ni, Al-Fe-B 합금의 기계적 성질 및 조직)

  • 김여원;신문교
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.57-66
    • /
    • 1986
  • The microstructure and mechanical properties of unidirectionally solidified Al-Fe-Ni and Al-Fe-B alloys have been studied in varying the some conditions. To investigate the change of microstructure and mechanical properties was carried out by the varying the composition and solidification rate from 1.2 to 80 mm/min at temperature gradient 60 .deg. C/cm. The results obtained are as follow; 1. In proportion to the increase of the solidification rate, the type of crystallized phase of these composite alloys was changed by added element. a) The crystallized phase of composite alloy in added nikel was changed from the rod-type fiber to platetype fiber. b) The crystallized phase of composite alloy in added boron was changed from the plate-type fiber to rod-type fiber. 2. The strength was rapidly increased with the changing process of crystallized fiber from the plate-type fiber to the rod-type.

  • PDF

Preparation of Transparent ${\gamma}$-$6Bi_2O_3$.$GeO_2$ Polycrystals by Unidirection Solidification of Melt (융액 일방향 응고법에 의한 ${\gamma}$-$6Bi_2O_3$.$GeO_2$ 투명 다결정체의 제조)

  • 김호건;김명섭;류일환
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.567-573
    • /
    • 1990
  • Solidification condition for preparing transparent ${\gamma}$-6Bi2O3.GeO2 polycrystals by unidirectional solidification of melt, were investigaetd and the properties of the polycrystals prepared were measured. The ${\gamma}$-6Bi2O3.GeO2 polycrystals showing transparency like a single crystal were obtained by the unidirectional solidification of ${\gamma}$-6Bi2O3.GeO2 melt at a solidification rate of 0.5mm/h under a thermal gradient of 12$0^{\circ}C$/cm. The transparent polycrystals obtained showed the same photoconduction and optical activity as the ${\gamma}$-6Bi2O3.GeO2 single crystals grown by Czochralski method. But the electro-optic effect of polycrystals was heterogeneous because the colummar ${\gamma}$-6Bi2O3.GeO2 crystals were not oriented to the particular crystallographic direction.

  • PDF

Estimation of Liquid Physical Properties of Mar-M247LC Superalloy by Directional Solidification (일방향 응고법을 이용한 Mar M-247LC 초내열합금의 액상 물성 측정)

  • Kim, Hyeon-Cheol;Lee, Jae-Hyeon;Seo, Seong-Mun;Kim, Du-Hyeon;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.721-726
    • /
    • 2001
  • Directional solidification experiments have been carried out at the solidification rates from 0.5 to 50$\mu\textrm{m}$/s in Mar M-247LC superalloy in which several important liquid properties were estimated by analyzing the interface stability and temperature gradient at the solid/liquid interface. The diffusion coefficient in the liquid was estimated by employing the constitutional supercooling criterion. The temperature gradients changed with solidification rates and latent heat of solidification. The thermal conductivities of solid and liquid could be estimated by heat flux balance at the solid liquid interface.

  • PDF

Solidification and Segregation Behaviors with Solidification Rate in Co base superalloy, FSX-414 (일방향 응고된 Co기 초내열합금 FSX-414의 응고속도에 따른 응고조직 및 편석 거동)

  • Lee, Hyun-Jung;Lee, Je-Hyun;Seo, Seong-Moon;Jo, Chang-Young;Gwon, Seok-Hwan;Chang, Byeong-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.440-446
    • /
    • 2009
  • Co base superalloys have been widely used for the parts of gas turbine due to their excellent strength, thermal fatigue, oxidation resistance and weldability at high temperature. In this study, directional solidifications were carried out at various solidification rates, including $0.5{\sim}300{\mu}m/s$ in the Co base superalloy FSX-414. The cellular interface were formed at a low solidification rate, $1{\mu}m/s$, and the dendritic interface was found at higher solidification rates, $5{\sim}300{\mu}m/s$. As the spacing of dendrite structure decreased, the size and spacing of eutectics decreased. Dendrite arm spacing decreased with increasing solidification rates and temperature gradient. It was interesting to find the $M_{23}C_{6}$ eutectic microstructure formed between $\gamma$ dendrites. Composition analysis showed that Cr and W were segregated severely between the dendrites, which resulted in the formation of Cr-rich $M_{23}C_{6}$ and W-rich MC carbides.

A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions (고압터빈 노즐에서 입구온도분포와 장착조건에 따른 저주기 피로 수명 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho;Seo, Do Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1145-1151
    • /
    • 2015
  • High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

The Effect of Re addition and Solidification Rate on the Directional Solidification Behavior of Ni-Al Alloy (Ni-Al 합금의 일방향 응고 거동에 미치는 Re 및 응고속도의 영향)

  • Lee, Man-Gil;Yoo, Young-Soo;Jo, Chang-Yong;Lee, Je-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.243-249
    • /
    • 2007
  • The effect of Re addition and solidification rate on the directional solidification behavior of Ni-Al model alloy has been investigated. Directional solidification (DS) were carried out using the modified Bridgman furnace with various solidification rates. The solid/liquid interface during directional solidification was preserved by quenching the specimen after the desired volume fraction of original liquid was solidified. The equilibrium partition coefficients of Al and Re Were estimated by measuring the compositions at the quenched solid/liquid interface. Then, the effect of Re addition on the elemental segregation behavior was carefully analyzed. The differential scanning calorimetry results showed that the Re addition results in increased ${\gamma}'$ solvus and freezing range of the alloy. It was also shown that the primary dendrite arm spacing gradually decreases with increasing the Re content, while the secondary dendrite arm spacing appears to be independent on the Re content. The compositional analyses clearly revealed that the segregation of Al increased with increasing the Re content and solidification rate, while that of Re was found to be independent on the solidification rate in the range of $10{\sim}100{\mu}m/s$ due to its sluggish diffusion rate in the Ni solid solution.

Dendrite Arm Spacing and Carbide Morphology with Thermal Gradient and Solidification Rate in Directionally Solidified Ni-Base Superalloy (일방향 초내열합금에서 응고속도 및 온도구배 따른 수지상간격 및 탄화물 형상 변화)

  • Son, S.D.;Kim, Y.H.;Choi, G.S.;Lee, J.H.;Seo, S.M.;Jo, C.Y.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • The effects of thermal gradient and solidification rate on the dendrite arm spacing and carbide morphology were investigated in directionally solidified Ni-base superalloy, CM 247LC. Thermal gradient was controlled by changing the position of the cold chamber and the furnace set temperature. The interface morphology changed from the planar to dendritic as increasing solidification rate. It was found that the dendrite spacing decreased as increasing the thermal gradient as well as the solidification rate. Also, as increasing solidification rate, carbide morphology changed from blocky shape to script and spotty shapes.

Metallurgical Refinement of Multicrystalline Silicon by Directional Solidification (일방향 응고법에 의한 다결정 실리콘의 야금학적 정련)

  • Jang, Eunsu;Park, Dongho;Yu, Tae U;Moon, Byung Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.111.1-111.1
    • /
    • 2011
  • The solar energy is dramatically increasing as the alternative energy source and the silicon(Si) solar cell are used the most. In this study, the improved process and equipment for the metallurgical refinement of multicrystalline Si were evaluated for the inexpensive solar cell. The planar plane and columnar dendrite aheadof the liquid-solid interface position caused the superior segregation of impurities from the Si. The solidification rate and thermal gradient determined the shape of dendrite in solidified Si matrix solidified by the directional solidification(DS) method. To simulate this equipment, the commercial software, PROCAST, was used to solve the solidification rate and thermal gradient. Si was vertically solidified by the DS system with Stober process and up-graded metallurgical grade or metallurgical grade Si was used as the feedstock. The inductively coupled plasma mass spectrometry (ICP) was used to measure the concentration of impurities in the refined Si ingot. According to the result of ICP and simulation, the high thermal gradient between the two phases wasable to increase the solidification rate under the identical level of refinement. Also, the separating heating zone equipped with the melting and solidification zone was effective to maintain the high thermal gradient during the solidification.

  • PDF