• Title/Summary/Keyword: 일반 상식 추론

Search Result 7, Processing Time 0.022 seconds

SRLev-BIH: An Evaluation Metric for Korean Generative Commonsense Reasoning (SRLev-BIH: 한국어 일반 상식 추론 및 생성 능력 평가 지표)

  • Jaehyung Seo;Yoonna Jang;Jaewook Lee;Hyeonseok Moon;Sugyeong Eo;Chanjun Park;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.176-181
    • /
    • 2022
  • 일반 상식 추론 능력은 가장 사람다운 능력 중 하나로써, 인공지능 모델이 쉽게 모사하기 어려운 영역이다. 딥러닝 기반의 언어 모델은 여전히 일반 상식에 기반한 추론을 필요로 하는 분야에서 부족한 성능을 보인다. 특히, 한국어에서는 일반 상식 추론과 관련한 연구가 상당히 부족한 상황이다. 이러한 문제 완화를 위해 최근 생성 기반의 일반 상식 추론을 위한 한국어 데이터셋인 Korean CommonGen [1]이 발표되었다. 그러나, 해당 데이터셋의 평가 지표는 어휘 단계의 유사성과 중첩에 의존하는 한계를 지니며, 생성한 문장이 일반 상식에 부합한 문장인지 측정하기 어렵다. 따라서 본 논문은 한국어 일반 상식 추론 및 생성 능력에 대한 평가 지표를 개선하기 위해 문장 성분의 의미역과 자모의 형태 변화를 바탕으로 생성 결과를 평가하는 SRLev, 사람의 평가 결과를 학습한 BIH, 그리고 두 평가 지표의 장점을 결합한 SRLev-BIH를 제안한다.

  • PDF

Korean Commonsense Reasoning Evaluation for Large Language Models (거대언어모델을 위한 한국어 상식추론 기반 평가)

  • Jaehyung Seo;Chanjun Park;Hyeonseok Moon;Sugyeong Eo;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.162-167
    • /
    • 2023
  • 본 논문은 거대언어모델에 대한 한국어 상식추론 기반의 새로운 평가 방식을 제안한다. 제안하는 평가 방식은 한국어의 일반 상식을 기초로 삼으며, 이는 거대언어모델이 주어진 정보를 얼마나 잘 이해하고, 그에 부합하는 결과물을 생성할 수 있는지를 판단하기 위함이다. 기존의 한국어 상식추론 능력 평가로 사용하던 Korean-CommonGEN에서 언어 모델은 이미 높은 수준의 성능을 보이며, GPT-3와 같은 거대언어모델은 사람의 상한선을 넘어선 성능을 기록한다. 따라서, 기존의 평가 방식으로는 거대언어모델의 발전된 상식추론 능력을 정교하게 평가하기 어렵다. 더 나아가, 상식 추론 능력을 평가하는 과정에서 사회적 편견이나 환각 현상을 충분히 고려하지 못하고 있다. 본 연구의 평가 방법은 거대언어모델이 야기하는 문제점을 반영하여, 다가오는 거대언어모델 시대에 한국어 자연어 처리 연구가 지속적으로 발전할 수 있도록 하는 상식추론 벤치마크 구성 방식을 새롭게 제시한다.

  • PDF

Ko-ATOMIC 2.0: Constructing Commonsense Knowledge Graph in Korean (Ko-ATOMIC 2.0: 한국어 상식 지식 그래프 구축)

  • Jaewook Lee;Jaehyung Seo;Dahyun Jung;Chanjun Park;Imatitikua Aiyanyo;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.319-323
    • /
    • 2023
  • 일반 상식 기반의 지식 그래프는 대규모 코퍼스에 포함되어 있는 일반 상식을 수집하고 구조화하는 지식의 표현 방법이다. 일반 상식 기반의 지식 그래프는 코퍼스 내에 포함되어 있는 다양한 일반 상식의 형태와 관계를 모델링하며, 주로 질의응답 시스템, 상식 추론 등의 자연어처리 하위 작업에 활용할 수 있다. 가장 잘 알려진 일반 상식 기반의 지식 그래프로는 ConceptNet [1], ATOMIC [2]이 있다. 하지만 한국어 기반의 일반 상식 기반의 지식 그래프에 대한 연구가 존재했지만, 자연어처리 태스크에 활용하기에는 충분하지 않다. 본 연구에서는 대규모 언어 모델과 프롬프트의 활용을 통해 한국어 일반 상식 기반의 지식 그래프를 효과적으로 구축하는 방법론을 제시한다. 또한, 제안하는 방법론으로 구축한 지식 그래프와 기존의 한국어 상식 그래프의 품질을 양적, 질적으로 검증한다.

  • PDF

KommonGen: A Dataset for Korean Generative Commonsense Reasoning Evaluation (KommonGen: 한국어 생성 모델의 상식 추론 평가 데이터셋)

  • Seo, Jaehyung;Park, Chanjun;Moon, Hyeonseok;Eo, Sugyeong;Kang, Myunghoon;Lee, Seounghoon;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.55-60
    • /
    • 2021
  • 최근 한국어에 대한 자연어 처리 연구는 딥러닝 기반의 자연어 이해 모델을 중심으로 각 모델의 성능에 대한 비교 분석과 평가가 활발하게 이루어지고 있다. 그러나 한국어 생성 모델에 대해서도 자연어 이해 영역의 하위 과제(e.g. 감정 분류, 문장 유사도 측정 등)에 대한 수행 능력만을 정량적으로 평가하여, 생성 모델의 한국어 문장 구성 능력이나 상식 추론 과정을 충분히 평가하지 못하고 있다. 또한 대부분의 생성 모델은 여전히 간단하고 일반적인 상식에 부합하는 자연스러운 문장을 생성하는 것에도 큰 어려움을 겪고 있기에 이를 해결하기 위한 개선 연구가 필요한 상황이다. 따라서 본 논문은 이러한 문제를 해결하기 위해 한국어 생성 모델이 일반 상식 추론 능력을 바탕으로 문장을 생성하도록 KommonGen 데이터셋을 제안한다. 그리고 KommonGen을 통해 한국어 생성 모델의 성능을 정량적으로 비교 분석할 수 있도록 평가 기준을 구성하고, 한국어 기반 자연어 생성 모델의 개선 방향을 제시하고자 한다.

  • PDF

CommonAI: Quantitative and qualitative analysis for automatic-generation of Commonsense Reasoning sentence suitable for AI (AI에 적합한 일반상식 문장의 자동 생성을 위한 정량적, 정성적 연구)

  • Hyeon Gyu Shin;YoungSook Son
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.153-159
    • /
    • 2022
  • 본 논문에서는 인공지능이 생성하는 일상 대화의 품질 향상을 위해 상식 추론을 정의하고 설문을 통해 정량적, 정성적 분석을 진행하였다. 정량적 평가에서는 주어진 문장이 에게 학습시키기에 적합한가'라는 수용성 판단을 요청한 질문에서 40대 이상의 연령이 20, 30대와 유의미한 차이를 보였다. 정성적 평가에서는 '보편적 사실 여부'를 AI 발화 기준의 주요한 지표로 보았다. 이어서 '챗봇' 대화의 품질에 대한 설문을 실시했다. 이를 통해 일상 대화를 사용한 챗봇의 대화 품질을 높이기 위해서는 먼저, 질문의 요구에 적절한 정보와 공감을 제공해야 하고 두 번째로 공감의 정도가 챗봇의 특성에 맞는 응답이어야 하며 세 번째로 대화의 차례에 따라 담화의 규칙을 지키면서 대화가 진행되어야 한다는 결론을 얻을 수 있었다. 이 세 가지 요건이 통합적으로 적용된 담화 설계를 통해 완전히 인공지능스러운 대화가 가능할 것으로 여겨진다.

  • PDF

Exploratory Experiment Analysis for Video Generation by Collage Technique (콜라주 기법에 의한 비디오 생성을 위한 탐색적 실험 분석)

  • Cho, Hyeongrae;Park, Gooman
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.123-126
    • /
    • 2020
  • 딥러닝이 정답을 찾아가는 연구과정이라면 미술은 정답이나 오답의 단정적 결과보다는 미추(아름다움과 추함)를 포함하는 과정적, 창조적 행위에 가깝다고 할 수 있다. 다시 말하면 미술은 0과 1로만 환원할 수 없는 세계를 기술하여 감동을 주는 유기적 규칙이 내재되어 있고 때로는 과학이 만들어낸 결론을 뒤집는 반상식적 추론을 하기도 한다. 그러므로 딥러닝은 예술적 방식을 통하여 과학의 상식적 추론과의 좋은 거리(Fine distance)를 유지할 필요성이 있는데, 이를 위해서 기존 딥러닝의 이미지 생성과 관련하여 Distance, Classification, Optimization 등의 문제를 미술 표현 기법과 목적이 담겨있는 창작자의 Statement 키워드와의 유사성과 차이점을 비교 분석할 필요가 있다고 생각한다. 시각적 표현과 관련된 딥러닝의 성능은 아직 사람의 표현능력에 못 미치고 있어 본 논문에서는 콜라주 기법에 의한 비디오 생성을 위한 탐색적 실험 분석을 목적으로 GAN을 활용한 콜라주 비디오를 제작하고 그 문제점과 개선점을 제안하고자 한다.

  • PDF

Automatic Expansion of ConceptNet by Using Neural Tensor Networks (신경 텐서망을 이용한 컨셉넷 자동 확장)

  • Choi, Yong Seok;Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.549-554
    • /
    • 2016
  • ConceptNet is a common sense knowledge base which is formed in a semantic graph whose nodes represent concepts and edges show relationships between concepts. As it is difficult to make knowledge base integrity, a knowledge base often suffers from incompleteness problem. Therefore the quality of reasoning performed over such knowledge bases is sometimes unreliable. This work presents neural tensor networks which can alleviate the problem of knowledge bases incompleteness by reasoning new assertions and adding them into ConceptNet. The neural tensor networks are trained with a collection of assertions extracted from ConceptNet. The input of the networks is two concepts, and the output is the confidence score, telling how possible the connection between two concepts is under a specified relationship. The neural tensor networks can expand the usefulness of ConceptNet by increasing the degree of nodes. The accuracy of the neural tensor networks is 87.7% on testing data set. Also the neural tensor networks can predict a new assertion which does not exist in ConceptNet with an accuracy 85.01%.