• 제목/요약/키워드: 일반화 파레토분포

검색결과 17건 처리시간 0.022초

일반화 파레토 모형에서의 베이지안 예측 (A Bayesian Prediction of the Generalized Pareto Model)

  • 판허;손중권
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1069-1076
    • /
    • 2014
  • 기후 온난화의 한 현상으로 받아들여지는 집중호우로 인한 관심이 늘어난 만큼 강우량에 대한 예측 모형이 필요하다. 이러 환경 문제를 다룰 때, 모형을 설정하는 방법 중에 하나로 일반화 파레토 모형을 활용하는 연구가 이루어지고 있다. 본 논문에서는 서울특별시에 대한 1973년부터 2011년까지 매 7월 일별강우량 자료를 가지고 일반화 파레토 모형을 사용하여 강우량의 임계값(70mm) 이상의 분포가 어떻게 되는지 연구한다. 모수의 사전분포는 감마분포랑 역감마분포를 정의하고, 또는 제프리의 정보가 없는 사전분포를 두고, 깁스 표본방법을 통해 베이지안 사후예측분포를 구하고 얻어진 결과를 비교해 본다.

GPD 기반의 유전자 알고리즘을 이용한 포트폴리오 최적화 (Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution)

  • 김현돈;김현태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1479-1494
    • /
    • 2015
  • 최적의 포트폴리오를 선택하기 위한 연구는 평균-분산모형을 시작으로 다양하게 진행되어 왔다. 과거에는 위험자산의 확률분포가 정규분포를 따른다고 가정하여, 투자자가 보유한 위험자산의 분산이 최소화되고 기대수익률이 최대가 되도록 포트폴리오를 구성하도록 하였다. 그러나 실제 위험자산의 분포에는 극단적인 사건들이 많이 발생하기 때문에 정규분포보다 훨씬 꼬리부분이 두꺼우며, 또한 왼쪽꼬리와 오른쪽꼬리가 대칭적이지도 않은 것으로 밝혀졌다. 이에 본 논문에서는 위험자산의 확률분포를 극단치 이론에서 널리 사용되는 일반화 파레토분포 (GPD)로 모형화하였고 체계적인 위험의 추정을 위하여 VaR를 이용하는 한편, 최적의 포트폴리오의 탐색을 위해서는 유전자 알고리즘을 사용하였다. 제안 방법의 적정성을 확인하기 위해 국내 증시에서 최적 포트폴리오를 탐색해 보았으며, 그 결과 GPD로 투자자산의 위험을 추정하였을 때 가장 좋은 결과를 얻을 수 있었다.

균일분포의 파레토 최적해 생성을 위한 다목적 최적화 진화 알고리즘 (Evolutionary Multi-Objective Optimization Algorithms for Uniform Distributed Pareto Optimal Solutions)

  • 장수현;윤병주
    • 정보처리학회논문지B
    • /
    • 제11B권7호
    • /
    • pp.841-848
    • /
    • 2004
  • 진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 비교적 우수한 평가를 받고 있다. 그러나 일반화된 다목적 최적화 진화알고리즘은 복잡한 문제들에서 찾아진 해들의 분포가 전체 파레토 경계면에 대하여 균일하지 못하고 특정 지역에서 집중적으로 해를 생성하는 문제점을 가지고 있다. 본 논문에서 우리는 이러한 문제점을 보완하기 위한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 현재까지 찾아진 최적해들 중 특정 지역에 관중되지 않은 해를 우수 종자로 복제 연산에 참여시킨다. 따라서 특별한 지역탐색 기법을 사용하지 않아도 종자가 되는 개체 주위에 새로운 개체를 생성할 확률이 높기 때문에 지역탐색의 효과를 가질 수 있고, 비교적 고른 분포의 파레토 최적 해를 생성한 수 있다. 5개의 테스트 함수에 대한 실험 결과, 제안한 알고리즘은 모든 문제에서 전체 파레토 경계면에 균일한 분포의 해들을 생성할 수 있었으며, 많은 지역해를 가지는 문제를 제외한 모든 문제에서 NSGA-II보다 우수한 수렴 결과를 보였다.

일반화 파레토 분포에서 임계치 결정에 대한 대안적 연구 (An Alternative Study of the Determination of the Threshold for the Generalized Pareto Distribution)

  • 윤정연;조재범;정병철
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.931-939
    • /
    • 2011
  • 일반적으로 일반화 파레토 분포(Generalized Pareto Distribution; GPD)에서 임계치를 결정하는 방법으로는 MEF-그래프나 Hill-그래프를 통한 주관적인 판단을 이용한다는 약점이 존재한다. 본 연구에서는 이와 같은 기존 방법의 약점을 해결하기 위하여 GPD에서 임계치를 결정하는 방법으로 로버스트 추정량을 이용하는 새로운 접근 방법을 제안하였다. 더불어 1987년 1월 5일부터 2009년 8월 3일까지 공시된 KOSPI지수의 일별수익률의 손실부분에 해당하는 왼쪽꼬리부분을 이용하여 실증분석을 실시하였다. 실증분석은 기존의 그래프를 이용한 임계치 결정방법과 본 연구에서 제안한 방법에서 계산된 VaR이 어떤 차이가 존재하는가를 알아보는 방법으로 실시되었다. 분석결과 본 논문에서 제안한 임계치 결정방법에 의하여 계산된 VaR값들은 기존 방법의 VaR과 큰 차이를 보이지 않았다. 아울러 본 연구에서 제안한 임계치 결정방법의 안정성을 파악한 결과 기존 방법과 큰 차이를 보이지 않았다. 이와 같은 결과들을 토대로 본 연구에서 제안한 로버스트 추정량을 이용한 임계치 결정방법은 기존의 그래프를 이용한 주관적인 임계치 결정방법에 대한 대안적인 방법으로 충분히 고려될 수 있을 것으로 생각된다.

정확한 신뢰성 해석을 위한 아카이케 정보척도 기반 일반화파레토 분포의 임계점 추정 (Threshold Estimation of Generalized Pareto Distribution Based on Akaike Information Criterion for Accurate Reliability Analysis)

  • 강승훈;임우철;조수길;박상현;이민욱;최종수;홍섭;이태희
    • 대한기계학회논문집A
    • /
    • 제39권2호
    • /
    • pp.163-168
    • /
    • 2015
  • 공학분야의 신뢰성 해석은 점점 더 높은 신뢰도 영역에 대한 확률밀도함수의 예측을 요구한다. 따라서 높은 신뢰도를 정확하게 해석하기 위해 분포의 꼬리부분을 정확하게 표현해야 한다. 최근 들어 꼬리부분에 대한 표본만을 이용해 꼬리 모형을 생성하여 신뢰도를 추정할 수 있는 방법인 일반화파레토 분포에 대한 연구가 활발히 진행되고 있다. 하지만 기존의 연구에서는 부정확한 임계점 추정으로 꼬리부분에서 신뢰도의 정확도가 떨어진다. 따라서 본 논문에서는 아카이케 정보척도를 이용하여 임계점을 정확하고 강건하게 추정하고 이를 통해 꼬리 모형의 정확도를 향상시키는 아카이케 정보척도 기반 일반 화파레토 분포 기법을 제안한다. 또한 제안하는 기법을 이용한 신뢰성 해석을 수행하여 정확도가 향상된 신뢰성 해석 결과를 도출하였다.

꼬리가 두꺼운 분포의 고분위수에 대한 준모수적 붓스트랩 신뢰구간 (Semi-parametric Bootstrap Confidence Intervals for High-Quantiles of Heavy-Tailed Distributions)

  • 김지현
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.717-732
    • /
    • 2011
  • 꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간을 구할 때 적절한 붓스트랩 방법은 무엇인가에 대해 알아보았다. 비모수적 방법과 모수적 방법, 그리고 준모수적 방법의 성능을 모의실험을 통해 비교하였다.

극단값 분포 추정을 위한 모수적 비모수적 방법 (Parametric nonparametric methods for estimating extreme value distribution)

  • 우승현;강기훈
    • 문화기술의 융합
    • /
    • 제8권1호
    • /
    • pp.531-536
    • /
    • 2022
  • 본 논문은 꼬리가 두꺼운 분포의 꼬리부분에 대한 분포를 추정할 경우 모수적 방법과 비모수적 방법의 성능에 대해 비교하였다. 모수적 방법으로는 일반화 극단값 분포와 일반화 파레토 분포를 이용하였고, 비모수적 방법은 커널형 확률밀도함수 추정방법을 적용하였다. 두 접근법의 비교를 위해 2014년부터 2018년까지 서울시 관측소별 일일 미세먼지 공공데이터를 이용하여 블록 최댓값 모형과 분계점 초과치 모형을 적용하여 함수 추정한 결과를 함께 보이고 2년, 5년, 10년의 재현수준을 통해 고농도의 미세먼지가 일어날 지역을 예측하였다.

POT방법론을 이용한 자동차보험 손해율 추정 (Estimation of Car Insurance Loss Ratio Using the Peaks over Threshold Method)

  • 김수영;송종우
    • 응용통계연구
    • /
    • 제25권1호
    • /
    • pp.101-114
    • /
    • 2012
  • 자동차보험의 손해율이란 지급보험금의 수입보험료에 대한 비율을 의미한다. 손해율이 매우 큰 값을 갖는 대형손실이 일어나는 경우에는 보험회사의 재무적인 부분에 큰 악영향을 미치게 된다. 따라서 보험회사가 이에 대비할 수 있도록 하기 위하여 손해율의 극단 분위수(extreme quantile)를 추정하는 것은 매우 중요한 일이다. 다른 종류의 보험 관련 데이터와 같이 손해율의 분포는 오른쪽으로 긴 꼬리를 갖는 두꺼운 꼬리분포(heavy-tailed distribution)를 갖는다. 이런 자료에서 극단 분위수룰 추정하기 위하여 가장 많이 사용되는 방법론은 POT(Peaks over threshold)와 Hill 추정(Hill estimation)이다. 본 논문에서는 일반화파레토분포(generalized Pareto distribution; GPD)의 다양한 모수추정방법론의 성능을 모의실험과 실제 손해율 데이터를 사용하여 비교, 분석하였다. 또한 Hill 추정치를 사용하여 극단 분위수를 추정하였다. 그 결과 대부분의 경우에 POT 방법론이 Hill 추정치를 이용한 방법보다 정확한 분위수를 추정하였고, 모수추정방법론 중에서는 MLE, Zhang, NLS-2 방법론이 가장 좋은 결과를 보여주었다.

시간에 따라 변화하는 로그-정규분포와 파레토 합성 분포의 모형 추정 (Time-varying modeling of the composite LN-GPD)

  • 박소진;백창룡
    • 응용통계연구
    • /
    • 제31권1호
    • /
    • pp.109-122
    • /
    • 2018
  • 임계값을 기준으로 그 보다 작은 값은 로그정규분포(lognormal distribution; LN)를, 큰 값은 일반화파레토분포(generalized Pareto distribution; GPD)를 따르는 합성 분포를 LN-GPD 합성분포라 한다. Scollnik (2007)은 LN-GPD 합성분포가 로그정규분포와 GPD를 합성 시킴으로써 자료의 손실 없이 꼬리가 두꺼운 분포에서 좋은 적합력을 가진다고 밝혔다. 본 논문에서는 시간에 따라 변하는 LN-GPD 평균모형을 다루었으며 방법론으로는 국소 다항최대우도법을 기반으로 추정하는 방법에 대해서 연구하였다. 시간에 따라 변하는 분포를 추정함으로써 자료에 대한 훨씬 자세한 이해가 가능하며 이는 곧 상담원 배치나 자원배분과 같은 운영관리에 큰 도움을 줄 수 있다. 본 연구는 GPD 분포만을 고려한 Beirlant와 Goegebeur (2004)를 확장하여 절삭한 로그정규분포를 추가하여 자료의 손실 없이 자료의 특징을 살펴볼 수 있다는데도 의의가 있다. 모의실험을 통해 제안한 방법론의 적절함을 살펴 보았고 실증 자료 분석으로 이스라엘 은행의 콜센터 서비스 시간에 대해 분석하여 상담원 배치와 관련된 흥미로운 결과를 찾을 수 있었다.