• Title/Summary/Keyword: 일반화 파레토분포

Search Result 17, Processing Time 0.025 seconds

A Bayesian Prediction of the Generalized Pareto Model (일반화 파레토 모형에서의 베이지안 예측)

  • Huh, Pan;Sohn, Joong Kweon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1069-1076
    • /
    • 2014
  • Rainfall weather patterns have changed due to global warming and sudden heavy rainfalls have become more frequent. Economic loss due to heavy rainfall has increased. We study the generalized Pareto distribution for modelling rainfall in Seoul based on data from 1973 to 2008. We use several priors including Jeffrey's noninformative prior and Gibbs sampling method to derive Bayesian posterior predictive distributions. The probability of heavy rainfall has increased over the last ten years based on estimated posterior predictive distribution.

Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution (GPD 기반의 유전자 알고리즘을 이용한 포트폴리오 최적화)

  • Kim, Hyundon;Kim, Hyun Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1479-1494
    • /
    • 2015
  • Since the Markowitz's mean-variance framework for portfolio analysis, the topic of portfolio optimization has been an important topic in finance. Traditional approaches focus on maximizing the expected return of the portfolio while minimizing its variance, assuming that risky asset returns are normally distributed. The normality assumption however has widely been criticized as actual stock price distributions exhibit much heavier tails as well as asymmetry. To this extent, in this paper we employ the genetic algorithm to find the optimal portfolio under the Value-at-Risk (VaR) constraint, where the tail of risky assets are modeled with the generalized Pareto distribution (GPD), the standard distribution for exceedances in extreme value theory. An empirical study using Korean stock prices shows that the performance of the proposed method is efficient and better than alternative methods.

Evolutionary Multi-Objective Optimization Algorithms for Uniform Distributed Pareto Optimal Solutions (균일분포의 파레토 최적해 생성을 위한 다목적 최적화 진화 알고리즘)

  • Jang Su-Hyun;Yoon Byungjoo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.841-848
    • /
    • 2004
  • Evolutionary a1gorithms are well-suited for multi-objective optimization problems involving several, often conflicting objectives. Pareto-based evolutionary algorithms, in particular, have shown better performance than other multi-objective evolutionary algorithms in comparison. However, generalized evolutionary multi-objective optimization algorithms have a weak point, in which the distribution of solutions are not uni-formly distributed onto Pareto optimal front. In this paper, we propose an evolutionary a1gorithm for multi-objective optimization which uses seed individuals in order to overcome weakness of algorithms Published. Seed individual means a solution which is not located in the crowded region on Pareto front. And the idea of our algorithm uses seed individuals for reproducing individuals for next generation. Thus, proposed a1go-rithm takes advantage of local searching effect because new individuals are produced near the seed individual with high probability, and is able to produce comparatively uniform distributed pareto optimal solutions. Simulation results on five testbed problems show that the proposed algo-rithm could produce uniform distributed solutions onto pareto optimal front, and is able to show better convergence compared to NSGA-II on all testbed problems except multi-modal problem.

An Alternative Study of the Determination of the Threshold for the Generalized Pareto Distribution (일반화 파레토 분포에서 임계치 결정에 대한 대안적 연구)

  • Yoon, Jeong-Yoen;Cho, Jae-Beom;Jun, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.931-939
    • /
    • 2011
  • In practice, thresholds are determined by the two subjective assessment methods in a generalized pareto distribution of mean extreme function(MEF-graph) or Hill-graph. To remedy the problem of subjectiveness of these methods, we propose an alternative method to determine the threshold based on the robust statistics. We compared the MEF-graph, Hill-graph and our method through VaRs on the Korean stock market data from January 5, 1987 to August 3, 2009. As a result, the VaR based on the proposed method is not much different from the existing methods, and the standard deviation of VaR for our method was the smallest. The results show that our method can be a promising alternative to determine thresholds of the generalized pareto distributions.

Threshold Estimation of Generalized Pareto Distribution Based on Akaike Information Criterion for Accurate Reliability Analysis (정확한 신뢰성 해석을 위한 아카이케 정보척도 기반 일반화파레토 분포의 임계점 추정)

  • Kang, Seunghoon;Lim, Woochul;Cho, Su-Gil;Park, Sanghyun;Lee, Minuk;Choi, Jong-Su;Hong, Sup;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.163-168
    • /
    • 2015
  • In order to perform estimations with high reliability, it is necessary to deal with the tail part of the cumulative distribution function (CDF) in greater detail compared to an overall CDF. The use of a generalized Pareto distribution (GPD) to model the tail part of a CDF is receiving more research attention with the goal of performing estimations with high reliability. Current studies on GPDs focus on ways to determine the appropriate number of sample points and their parameters. However, even if a proper estimation is made, it can be inaccurate as a result of an incorrect threshold value. Therefore, in this paper, a GPD based on the Akaike information criterion (AIC) is proposed to improve the accuracy of the tail model. The proposed method determines an accurate threshold value using the AIC with the overall samples before estimating the GPD over the threshold. To validate the accuracy of the method, its reliability is compared with that obtained using a general GPD model with an empirical CDF.

Semi-parametric Bootstrap Confidence Intervals for High-Quantiles of Heavy-Tailed Distributions (꼬리가 두꺼운 분포의 고분위수에 대한 준모수적 붓스트랩 신뢰구간)

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.717-732
    • /
    • 2011
  • We consider bootstrap confidence intervals for high quantiles of heavy-tailed distribution. A semi-parametric method is compared with the non-parametric and the parametric method through simulation study.

Parametric nonparametric methods for estimating extreme value distribution (극단값 분포 추정을 위한 모수적 비모수적 방법)

  • Woo, Seunghyun;Kang, Kee-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.531-536
    • /
    • 2022
  • This paper compared the performance of the parametric method and the nonparametric method when estimating the distribution for the tail of the distribution with heavy tails. For the parametric method, the generalized extreme value distribution and the generalized Pareto distribution were used, and for the nonparametric method, the kernel density estimation method was applied. For comparison of the two approaches, the results of function estimation by applying the block maximum value model and the threshold excess model using daily fine dust public data for each observatory in Seoul from 2014 to 2018 are shown together. In addition, the area where high concentrations of fine dust will occur was predicted through the return level.

Estimation of Car Insurance Loss Ratio Using the Peaks over Threshold Method (POT방법론을 이용한 자동차보험 손해율 추정)

  • Kim, S.Y.;Song, J.
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.101-114
    • /
    • 2012
  • In car insurance, the loss ratio is the ratio of total losses paid out in claims divided by the total earned premiums. In order to minimize the loss to the insurance company, estimating extreme quantiles of loss ratio distribution is necessary because the loss ratio has essential prot and loss information. Like other types of insurance related datasets, the distribution of the loss ratio has heavy-tailed distribution. The Peaks over Threshold(POT) and the Hill estimator are commonly used to estimate extreme quantiles for heavy-tailed distribution. This article compares and analyzes the performances of various kinds of parameter estimating methods by using a simulation and the real loss ratio of car insurance data. In addition, we estimate extreme quantiles using the Hill estimator. As a result, the simulation and the loss ratio data applications demonstrate that the POT method estimates quantiles more accurately than the Hill estimation method in most cases. Moreover, MLE, Zhang, NLS-2 methods show the best performances among the methods of the GPD parameters estimation.

Time-varying modeling of the composite LN-GPD (시간에 따라 변화하는 로그-정규분포와 파레토 합성 분포의 모형 추정)

  • Park, Sojin;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.109-122
    • /
    • 2018
  • The composite lognormal-generalized Pareto distribution (LN-GPD) is a mixture of right-truncated lognormal and GPD for a given threshold value. Scollnik (Scandinavian Actuarial Journal, 2007, 20-33, 2007) shows that the composite LN-GPD is adequate to describe body distribution and heavy-tailedness. This paper considers time-varying modeling of the LN-GPD based on local polynomial maximum likelihood estimation. Time-varying model provides significant detailed information of time dependent data, hence it can be applied to disciplines such as service engineering for staffing and resources management. Our work also extends to Beirlant and Goegebeur (Journal of Multivariate Analysis, 89, 97-118, 2004) in the sense of losing no data by including truncated lognormal distribution. Our proposed method is shown to perform adequately in simulation. Real data application to the service time of the Israel bank call center shows interesting findings on the staffing policy.