• 제목/요약/키워드: 일반화 자기회귀 조건부 이분산

검색결과 8건 처리시간 0.017초

일반화 자기회귀 조건부 이분산 모형을 이용한 한국프로야구 관중수의 예측 (Forecasting attendance in the Korean professional baseball league using GARCH models)

  • 이장택;방소영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1041-1049
    • /
    • 2010
  • 한국프로야구에서 관중수는 프로야구 발전을 위한 가장 큰 수입원이며 프로야구팀의 관심사이므로 수요예측 모형이 있다면 프로야구구단들은 관중유치 전략을 세우는데 도움이 될 것이다. 이러한 이유로 본 연구에서는 한국프로야구 관중수를 예측하는 모형을 제안하고자 하며 제한된 여건 속에서 관중수에 영향을 미치는 이용 가능한 대부분의 변수들을 고려하였다. 종속변수는 로그관중수로 두고 다양한 독립변수와 오차항의 분산을 등분산, 조건부 이분산을 가정한 여러 가지 일반화 자기회귀 모형, 오차항의 분포가 t분포를 따른다는 가정을 이용한 일반화 자기회귀 조건부 이분산 모형들을 서로 비교하였는데, 그 결과 고려된 모형 중에서는 t분포를 가정한 일반화 자기회귀 조건부 이분산 모형이 가장 예측력이 뛰어났다.

일반 자기회귀 이분산 모형을 이용한 시계열 자료 분석 (Analyzing financial time series data using the GARCH model)

  • 김삼용;김진아
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권3호
    • /
    • pp.475-483
    • /
    • 2009
  • 본 연구에서는 한국종합주가지수 데이터를 이용하여 다양한 비선형 시계열 모형들을 소개하였다. 조건부 평균의 선형 모형으로는 상수항 모형, 자기회귀 모형을 살펴보았으며, 비선형 모형으로는 분계점 자기회귀 모형, 지수적 자기회귀 모형을 살펴보았다. 조건부 분산 모형으로는 일반 자기회귀 이분산 모형과 지수적 일반 자기회귀 이분산 모형, Glosten 등 (1993)의 모형 그리고 일반화 이항멱변환 분계점 일반 자기회귀 이분산 모형을 살펴보았다. 한편, 일반화 이항멱변환 분계점 일반 자기회귀 이분산 모형은 대표적 비대칭성 이분산성 모형인 Zakoian (1993) 모형과 Li와 Li (1996) 모형을 효과적으로 통합할 수 있는 변형된 모형이다. 본 연구에서는, 한국종합주가지수 데이터를 분석하여 새로운 모형의 효율성을 증명하였다.

  • PDF

붓스트랩 방법을 이용한 일반화 자기회귀 조건부 이분산모형에서의 조건부 분산 예측 (Prediction of Conditional Variance under GARCH Model Based on Bootstrap Methods)

  • 김희영;박만식
    • Communications for Statistical Applications and Methods
    • /
    • 제16권2호
    • /
    • pp.287-297
    • /
    • 2009
  • 일반적으로 일반화 자기회귀 조건부 이분산(GARCH)모형 하에서, 우도함수에 기반한 자료의 예측구간의 추정은 오차항의 분포에 민감하게 반응하고 더욱이 조건부분산의 경우 구간추정이 현실적으로 쉽게 풀리지 않는 문제이다. 이를 해결하기 위해 붓스트랩방법(bootstrap method)이 적용될 수 있음을 최근 연구들을 통해 밝혀졌다. 본 논문에서는 GARCH모형 하에서 자료와 변동성(조건부 분산)의 예측구간 추정을 위해 최근 소개된 Pascual 등 (2006)의 논문을 토대로 붓스트랩 방법를 정리하였다 실제 사례분석을 위해 국내 주가수익률자료를 이용하였다.

커널기계 기법을 이용한 일반화 이분산자기회귀모형 추정 (Estimating GARCH models using kernel machine learning)

  • 황창하;신사임
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.419-425
    • /
    • 2010
  • 커널기계 기법은 최근 대용량 또는 고차원 비선형 자료를 분석하는 방법으로 인기를 많이 얻고 있다. 본 논문에서는 주식시장 수익률의 조건부 변동성을 예측하기 위한 일반화 이분산자기회귀모형을 추정하기 위해 커널기계 기법을 사용한다. 일반화 이분산자기회귀모형은 자료가 정규분포를 따른다고 가정한 후 주로 최대우도법을 사용하여 추정된다. 본 논문에서는 꼬리가 두꺼운 분포를 갖는 금융시계열자료의 변동성을 추정할 때 커널기계 기법이 최대우도법과 서포트벡터기계 보다 더 정확한 예측능력을 가진다는 것을 보이고자 한다.

이분산 시계열모형을 이용한 국내주식자료의 군집분석 (Clustering Korean Stock Return Data Based on GARCH Model)

  • 박만식;김나영;김희영
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.925-937
    • /
    • 2008
  • 본 논문에서는 주식시장에서 거래되는 다수의 주식거래종목들을 몇 개의 그룹으로 군집화하는 주제를 연구한다. 시간에 관계없이 분산이 일정한 ARMA모형과 다르게, 주가, 환율 등의 금융시계열자료에서는 조건부 이분산성을 따르게 된다. 또한, 많은 사람들이 금융시계열자료에서 관심을 갖는 것은 바로 이 변동성이다. 그러므로, 이 연구에서는 조건부 이분산성을 모형화하기에 적합하다고 알려진 일반화 조건부 이분산성 자기회귀모형에 초점을 맞춘다. 먼저 두 개의 주식종목들 사이에 변동성(volatility)의 유사성 그리고 구조의 유사성을 재는 거리를 정의하고, 모의실험을 수행한다. 실증자료로 최근 3년 동안 관찰된 국내 11개 주가의 수익률을 변동성과 구조에 따라 군집화한다.

신경망을 이용한 비선형 시계열 자료의 예측 (Prediction for Nonlinear Time Series Data using Neural Network)

  • 김인규
    • 디지털융복합연구
    • /
    • 제10권9호
    • /
    • pp.357-362
    • /
    • 2012
  • 본 논문에서는 분산이 각각 다른 이분산성을 갖는 비선형 시계열 자료를 가지고, 비선형 시계열 모형중 1차 일반화 확률계수 자기회귀모형(GRCA(1))과 자료의 형태에 상관없이 적용할 수 있는 신경망 모형을 이용하여 예측을 해서 어느 모형이 최소 평균예측오차제곱의 기준에서 비선형 시계열 자료의 예측에 적합한지를 비교 분석 하는 것이다. 조건부 이분산 모형에 따르는 자료로 확인된 종합주가지수 변동율에 대한 사례 분석 결과를 보면 신경망 모형은 단기 예측에서 좋은 예측 결과를 보였고, 비선형 모형인 GRCA(1) 모형은 장기 예측에서 좋은 예측 결과를 보여 주었다.

딥러닝 분석을 이용한 중국 역내·외 위안화 변동성 예측 (A deep learning analysis of the Chinese Yuan's volatility in the onshore and offshore markets)

  • 이우식;전희주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.327-335
    • /
    • 2016
  • 2008년 글로벌 금융위기 이후 중국은 위안화 국제화의 점진적 추진을 진행하면서 중국상하이 외환시장과 중국홍콩 외환시장에서 거래되는 통화인 역내위안화와 역외위안화를 형성시켰다. 본 연구는 위안화 국제화와 점진적인 중국 자본계정 개방에 따라 급변하는 외환시장상황의 변동성을 정확하게 파악하기 위해서 GARCH모형 (일반화된 자기회귀 조건부이분산성모형)에 다단계인공신경망을 결합한 MLP-GARCH 모형과 GARCH모형과 기계학습의 일종인 딥러닝 (deep learning)을 통합한 DL-GARCH을 가지고 위안화 변동성예측을 비교 실험과 분석을 하였다. 비교분석 결과 DL-GARCH 모형은 MLP-GARCH보다 모형 위안화 역내 외 환율변동성 예측 면에서 더욱 더 개선된 예측값을 제공하였다. 그래서 이분산시계열모형을 딥러닝과 결합한 DL-GARCH 모형은 시계열의 환율 변동성 예측 문제에 딥러닝을 응용할 수 있음을 확인하였다. 향후 이분산시계열과 결합된 딥러닝 모형은 다른 금융시계열 데이터에 응용하여 그 일반화 가능성을 높일 수 있을 것이다.

중국증권시장의 정보이전효과에 관한 연구 (A study on the information transfer effect among the China stock markets)

  • 이상우;이의경
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1075-1084
    • /
    • 2012
  • 본 논문은 중국의 상해, 심천, 홍콩증권시장간의 정보이전효과를 연구한 것이다. 세 개의 중국 증권시장은 모두 미국의 증권시장수익률에 강하게 영향을 받는데 그 정도는 개방화가 제일 잘된 홍콩증권시장이 가장 크며 상해증권시장, 심천증권시장의 순으로 영향을 받는 것으로 나타나고 있다. 상해증권시장이나 심천증권시장은 서로 간에 수익률이전효과나 변동성전이효과가 존재하지 않지만 이 두 시장은 모두 홍콩증권시장수익률의 영향을 받는 것으로 나타났다. 하지만 미국증권시장의 움직임을 통제하면 이러한 효과는 사라지게 되어 중국의 증권시장간의 정보이전효과는 존재하지 않는 것으로 나타나고 있다. 이러한 결론은 중국의 세 개의 증권시장이 상호독립적인 성격이 강하다는 것을 의미하며, 중국의 증권시장 연구 시 시장 간의 독립성을 반영해야 할 것으로 생각된다.