• 제목/요약/키워드: 일반화 델타규칙

검색결과 6건 처리시간 0.018초

신경회로망을 이용한 과도파형의 기본파성분 추출에 관한 연구 (A Study on the Extraction of Fundamental Frequency Components in the Transient Wave Signals Using Artificial neural networks)

  • 신명철;이복구
    • 대한전기학회논문지
    • /
    • 제43권4호
    • /
    • pp.553-563
    • /
    • 1994
  • This paper presents a filtering method using neural networks to extract fundamental frequency components of the transient wave signals in power systems. Based on the ability of multilayer feedforward neural networks to approximate any continuous function, a neural networks mapping filter is proposed for the protective distance relaying systems to extract the effective components efficiently. A characteristic feature of this mapping filter is composed of the multilayer perceptron neural networks which are trained by using random signals and those are mapped to the DFT filtering computational structure by GDR(Generalized Delta Rule). The advantage of this approach is demonstrated by the random waves and the fault transient wave signals of EMTP(electromagnetic transients program) in power systems fault conditions. The proposed method is compared with the conventional method and the simulation results show the efficiency of the neural networks.

  • PDF

적응제어 수치제어 시스템의 개발 (I) 신경회로망 기법에 의한 절삭계수의 지적인 선정 (Development of Adaptive Numerical Control System(I)Intelligent Selection of Machining Parameters by Neural-Network Methodology)

  • 정성종
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1223-1233
    • /
    • 1992
  • 본 연구에서는 일반화된 델타규칙을 이용한 신경회로망 기법을 사용하여 절삭 계수의 수학적인 모형화를 수행하였고, 탄소강 공작물 및 고속도강 공구에 대하여 절 삭속도의 추정을 통하여 절삭성을 예측할 수 있는 방법론을 산삭작업에서 개발하였다. 그결과 방대한 양의 절삭계수를 저장할 필요가 없을 뿐만 아니라, 작업자의 경험에 따 른 절삭계수의 선정으로 인하여 발생할 수 있는 단점을 극복하고 유연한 절삭계수의 선정을 할 수 있게 하므로써 적응제어 기능을 갖는 수치제어장치의 개발에 응용할 수 있음을 밝혔다.

다중 신경망을 이용한 차량 번호판의 자동인식 시스템 (Automatic Recognition System for Number Plate of Car using Multi Neural Network)

  • 박상후;최규종;안두성
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.93-99
    • /
    • 2001
  • This paper presents the automatic recognition system for car number plate. In our country, two types of number plate pattern is used. The one is old type of number plate, the other is new type of number plate. To recognize both new and old type number plates, the system must have flexibility. Therefore, in this paper, automatic recognition system is developed by use of the neural network for good adaptation, good generalization, and modulation. And because the number plate is made of three codes, the multi neural network consists of three networks. Neural network is teamed by GDR(Generalized Delta learning Rule) and it is verified the effectiveness of the method through experimental results.

  • PDF

퍼지 추론과 개선된 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식

  • 주이환;김재용;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.195-202
    • /
    • 2004
  • 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화 한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자의 인식은 개선된 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었고 기존의 퍼지 RBF 네트워크 보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 우수함을 확인하였다.

  • PDF

인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측 (Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks)

  • 이윤규;윤여원;강병희
    • 한국지반공학회논문집
    • /
    • 제16권1호
    • /
    • pp.75-81
    • /
    • 2000
  • 일반적으로 자연상태의 흙은 이방성을 나타내며, 이러한 흙의 이방성이 응력-변형률 거동에 미치는 영향은 매우 크다. 따라서 본 연구에서는 인공신경회로망 모델을 이용하여 압밀응력비 변화에 따른 정규압밀점토의 응력-변형률 거동을 모델링하고 비배수전단강도를 예측하여 보았다. 이때 사용된 신경회로망은 일반화된 델타규칙으로도 불리우는 오차역전파 학습 알고리즘을 이용한 다층신경회로망이다. 신경회로망의 학습은 인공퇴적 점토시료를 이용, 연직압밀응력과 압밀응력비를 다르게 정규압밀시킨후 비배수전단시험을 실시하여 얻어진 시험 결과를 이용하였고, 학습된 신경회로망을 이용하여 학습시 제외되었던 압밀응력비 상태에서의 비배수전단강도를 추론하여 본 결과 예측치와 실측치가 잘 일치하였다. 검토결과 실측치와 추론치 사이에는 결정계수($r^2$) 0.973 이상의 높은 상관관계가 있음을 확인하였다. 따라서, 본 연구결과는 점토의 비배수전단강도를 예측함에 있어서 인공신경회로망모델의 적용 가능성을 보여주었다.

  • PDF

퍼지 RBF 네트워크를 이용한 컨테이너 인식 시스템 (Container Recognition System using Fuzzy RBF Network)

  • 김재용;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.497-503
    • /
    • 2005
  • 본 논문에서는 퍼지 RBF 네트워크를 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지 추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4방향 윤광선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 퍼지 C-Means 알고리즘을 이용한 퍼지 RBF 네트워크를 제안하여 개별 식별자에 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출방법이 개선되었다. 그리고 기존의 ART2 기반 RBF 네트워크보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 있어서 우수함을 확인하였다.

  • PDF