• Title/Summary/Keyword: 일반화선형 모형

Search Result 152, Processing Time 0.021 seconds

A credit classification method based on generalized additive models using factor scores of mixtures of common factor analyzers (공통요인분석자혼합모형의 요인점수를 이용한 일반화가법모형 기반 신용평가)

  • Lim, Su-Yeol;Baek, Jang-Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.235-245
    • /
    • 2012
  • Logistic discrimination is an useful statistical technique for quantitative analysis of financial service industry. Especially it is not only easy to be implemented, but also has good classification rate. Generalized additive model is useful for credit scoring since it has the same advantages of logistic discrimination as well as accounting ability for the nonlinear effects of the explanatory variables. It may, however, need too many additive terms in the model when the number of explanatory variables is very large and there may exist dependencies among the variables. Mixtures of factor analyzers can be used for dimension reduction of high-dimensional feature. This study proposes to use the low-dimensional factor scores of mixtures of factor analyzers as the new features in the generalized additive model. Its application is demonstrated in the classification of some real credit scoring data. The comparison of correct classification rates of competing techniques shows the superiority of the generalized additive model using factor scores.

Hurdle Model for Longitudinal Zero-Inflated Count Data Analysis (영과잉 경시적 가산자료 분석을 위한 허들모형)

  • Jin, Iktae;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.923-932
    • /
    • 2014
  • The Hurdle model can to analyze zero-inflated count data. This model is a mixed model of the logit model for a binary component and a truncated Poisson model of a truncated count component. We propose a new hurdle model with a general heterogeneous random effects covariance matrix to analyze longitudinal zero-inflated count data using modified Cholesky decomposition. This decomposition factors the random effects covariance matrix into generalized autoregressive parameters and innovation variance. The parameters are modeled using (generalized) linear models and estimated with a Bayesian method. We use these methods to carefully analyze a real dataset.

Graphical regression and model assessment in logistic model (로지스틱모형에서 그래픽을 이용한 회귀와 모형평가)

  • Kahng, Myung-Wook;Kim, Bu-Yong;Hong, Ju-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.21-32
    • /
    • 2010
  • Graphical regression is a paradigm for obtaining regression information using plots without model assumptions. The general goal of this approach is to find lowdimensional sufficient summary plots without loss of important information. Model assessments using residual plots are less likely to be successful in models that are not linear. As an alternative approach, marginal model plots provide a general graphical method for assessing the model. We apply the methods of graphical regression and model assessment using marginal model plots to the logistic regression model.

A Study on Applying Shrinkage Method in Generalized Additive Model (일반화가법모형에서 축소방법의 적용연구)

  • Ki, Seung-Do;Kang, Kee-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.207-218
    • /
    • 2010
  • Generalized additive model(GAM) is the statistical model that resolves most of the problems existing in the traditional linear regression model. However, overfitting phenomenon can be aroused without applying any method to reduce the number of independent variables. Therefore, variable selection methods in generalized additive model are needed. Recently, Lasso related methods are popular for variable selection in regression analysis. In this research, we consider Group Lasso and Elastic net models for variable selection in GAM and propose an algorithm for finding solutions. We compare the proposed methods via Monte Carlo simulation and applying auto insurance data in the fiscal year 2005. lt is shown that the proposed methods result in the better performance.

Prediction for Nonlinear Time Series Data using Neural Network (신경망을 이용한 비선형 시계열 자료의 예측)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.357-362
    • /
    • 2012
  • We have compared and predicted for non-linear time series data which are real data having different variences using GRCA(1) model and neural network method. In particular, using Korea Composite Stock Price Index rate, mean square errors of prediction are obtained in genaralized random coefficient autoregressive model and neural network method. Neural network method prove to be better in short-term forecasting, however GRCA(1) model perform well in long-term forecasting.

Estimation of the Expected Loss per Exposure of Export Insurance using GLM (일반화 선형모형을 이용한 수출보험의 지급비율 추정)

  • Ju, Hyo Chan;Lee, Hangsuck
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.857-871
    • /
    • 2013
  • Export credit insurance is a policy tool for export growth. In the era of free trade under the governance of WTO, export credit insurance is still allowed as one of the few instruments to increase exports. This paper, using data on short-term export insurance contracts issued to foreign subsidiaries of Korean companies, calculates the expected loss per exposure by combining the effect of risk factors (credit rate of foreign importers, size of mother company, and payment period) on loss frequency and loss severity in different levels. We, applying generalized linear models (GLM), first fit loss frequency and loss severity to negative binomial and lognormal distribution, respectively, and then estimate the loss frequency rate per contract and the ratio of loss severity to coverage amount. Finally, we calculate the expected loss per exposure for each level of risk factors by combining these two rates. Based on the result of statistical analysis, we present the implication for the current premium rate of export insurance.

Generating high resolution of daily mean temperature using statistical models (통계적모형을 통한 고해상도 일별 평균기온 산정)

  • Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1215-1224
    • /
    • 2016
  • Climate information of the high resolution grid units is an important factor to explain the phenomenon in a variety of research field. Statistical linear interpolation models are computationally inexpensive and applicable to any climate data compared to the dynamic simulation method at regional scales. In this paper, we considered four different linear-based statistical interpolation models: general linear model, generalized additive model, spatial linear regression model, and Bayesian spatial linear regression model. The climate variable of interest was the daily mean temperature, where the spatial variability was explained using geographic terrain information: latitude, longitude, elevation. The data were collected by weather stations in January from 2003 and 2012. In the sense of RMSE and correlation coefficient, Bayesian spatial linear regression model showed better performance in reflecting the spatial pattern compared to the other models.

A Study on Regionalization of Bias Correction Parameters for Radar Precipitation Considering Geomorphic Characteristics (지형특성을 고려한 레이더 강수량 편의보정 매개변수 지역화 연구)

  • Kim, Tae-Jeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.57-57
    • /
    • 2019
  • 최근 수문기상학 분야에서 레이더 강수량을 활용한 응용연구가 활발하게 진행되고 있다. 하지만 레이더 강수량은 경험적으로 설정된 레이더 반사도-강우강도 관계식을 활용하여 레이더 강수량을 산정하기 때문에 실제지상에 도달하는 강수량과 정량적인 오차가 필연적으로 발생한다. 따라서 고해상도의 레이더 강수량을 활용한 신뢰도 높은 수문해석을 위하여 레이더 강수량의 편의보정이 필수적으로 선행되어야한다. 본 연구에서는 불확실성을 고려한 레이더 강수량 편의보정을 위하여 Bayesian 추론기법과 일반화 선형모형(generalized linear model)을 연계하여 레이더 강수량 편의보정 매개변수를 산정하였다. 일반화 선형모형을 적용한 레이더 강수량 편의보정 결과는 현재 널리 사용되고 있는 평균보정(mean field bias) 기법에 비하여 통계지표가 개선된 레이더 강수량 편의보정 결과를 도출하였다. 추가적으로 지형학적 특성에 따른 레이더 강수량 편의보정 매개변수의 변동성을 분석하여 고도 및 이격거리에 따른 편의보정 매개변수의 지역화 공식을 제시하였다. 본 연구를 통하여 개발된 레이더 강수량 편의보정 매개변수 산정 및 지역화 연구는 레이더 관측전략 수립과정에 유용한 기초자료로 활용될 것으로 판단된다.

  • PDF

G-Inverse and SAS IML for Parameter Estimation in General Linear Model (선형 모형에서 모수 추정을 위한 일반화 역행렬 및 SAS IML 이론에 관한 연구)

  • Choi, Kuey-Chung;Kang, Kwan-Joong;Park, Byung-Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.373-385
    • /
    • 2007
  • The solution of the normal equation arising in a general linear model by the least square methods is not unique in general. Conventionally, SAS IML and G-inverse matrices are considered for such problems. In this paper, we provide a systematic solution procedures for SAS IML.

Model Checking for Joint Modelling of Mean and Dispersion (평균과 산포의 동시 모형화에 대한 모형검토)

  • Ha, Il-Do;Lee, Woo-Dong;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.195-209
    • /
    • 1997
  • The joint modelling of mean and dispersion in quasi-likelihood models which greatly extend the scope of generalized linear models, is required in case that the dispersion parameter, the variance component of response variables, is not constant but changes by depending on any covariates. In this paper, by using statistical package GENSTAT(release 5.3.2, 1996) which makes a easily analyze real data through this joint modelling, we mention necessities that must consider this joint modelling rather than existing mean models through model checking based on graphic methods for esterase assay data introduced by Carrol and Ruppert(1987, pp.46-47), and then study methods finding reasonable joint model of mean and dispersion for this data.

  • PDF