• Title/Summary/Keyword: 일반인공지능

Search Result 261, Processing Time 0.035 seconds

Perception of Virtual Assistant and Smart Speaker: Semantic Network Analysis and Sentiment Analysis (가상 비서와 스마트 스피커에 대한 인식과 기대: 의미 연결망 분석과 감성분석을 중심으로)

  • Park, Hohyun;Kim, Jang Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.213-216
    • /
    • 2018
  • As the advantages of smart devices based on artificial intelligence and voice recognition become more prominent, Virtual Assistant is gaining popularity. Virtual Assistant provides a user experience through smart speakers and is valued as the most user friendly IoT device by consumers. The purpose of this study is to investigate whether there are differences in people's perception of the key virtual assistant brand voice recognition. We collected tweets that included six keyword form three companies that provide Virtual Assistant services. The authors conducted semantic network analysis for the collected datasets and analyzed the feelings of people through sentiment analysis. The result shows that many people have a different perception and mainly about the functions and services provided by the Virtual Assistant and the expectation and usability of the services. Also, people responded positively to most keywords.

  • PDF

Design and Implementation of Hashtag Recommendation System Based on Image Label Extraction using Deep Learning (딥러닝을 이용한 이미지 레이블 추출 기반 해시태그 추천 시스템 설계 및 구현)

  • Kim, Seon-Min;Cho, Dae-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.709-716
    • /
    • 2020
  • In social media, when posting a post, tag information of an image is generally used because the search is mainly performed using a tag. Users want to expose the post to many people by attaching the tag to the post. Also, the user has trouble posting the tag to be tagged along with the post, and posts that have not been tagged are also posted. In this paper, we propose a method to find an image similar to the input image, extract the label attached to the image, find the posts on instagram, where the label exists as a tag, and recommend other tags in the post. In the proposed method, the label is extracted from the image through the model of the convolutional neural network (CNN) deep learning technique, and the instagram is crawled with the extracted label to sort and recommended tags other than the label. We can see that it is easy to post an image using the recommended tag, increase the exposure of the search, and derive high accuracy due to fewer search errors.

Real Time SW Sizing Model for FP-Based Fintech Software Development Project (FP 기반의 핀테크 소프트웨어 개발 프로젝트 실시간 규모 산정 모델)

  • Koo, Kyung-Mo;Yoon, Byung-Un;Kim, Dong-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.36-44
    • /
    • 2021
  • Estimation on SW Sizing applied to fintech is very difficult, a task requiring long time, it is difficult for client companies and developer companies to accurately calculate the size of software development. The size is generally estimated based on the experience of project managers and the general functional scoring method. In this paper, propose a model that can be applied to fintech development projects by quantitatively calculating the required functions from the user's point of view, measuring the scale, and calculating the scale in real time. Through the proposed model, the amount of work can be estimated prior to development and the size can be measured, and the M/M and the estimated quotation amount can be calculated based on the program list by each layer. In future studies, by securing size computation data on existing the Fintech Project in mass, research on accurate size computation would be required.

A Study on the Collaboration between Government Departments in the Fourth Industrial Revolution Era (4차산업혁명시대의 정부부처 간 협력에 관한 연구)

  • Lee, Sun Young;Cho, Kyung Ho;Park, Kwang Kook
    • Journal of Digital Convergence
    • /
    • v.17 no.6
    • /
    • pp.35-42
    • /
    • 2019
  • This study was conducted to identify the determing factors of the success and constraints based on the perception of public officials preparing for the Fourth Industrial Revolution(4IR) and the collaboration among ministries. The analytic method performed an average value analysis based on the survey of public officials' awareness, and the results of the study are as follows. First, officials from nine ministries who are responsible for the 4IR recognized that they were regarded that the 4IR as a new opportunity, but if it failed to respond properly, there might be a crisis. Second, it recognizes the era of 4IR as the number one priority in big data, second in artificial intelligence and machine learning, and third in cloud computing technology. Third, they recognized that 'flexibility of the institutions' and 'recruitment of experts' were needed to prepare for the 4IR effectively.

Implementation of Artificial Intelligence Computer Go Program Using a Convolutional Neural Network and Monte Carlo Tree Search (Convolutional Neural Network와 Monte Carlo Tree Search를 이용한 인공지능 바둑 프로그램의 구현)

  • Ki, Cheol-min;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.405-408
    • /
    • 2016
  • Games like Go, Chess, Janggi have helped to brain development of the people. These games are developed by computer program. And many algorithms have been developed to allow myself to play. The person winning chess program was developed in the 1990s. But game of go is too large number of cases. So it was considered impossible to win professional go player. However, with the use of MCTS(Monte Carlo Tree Search) and CNN(Convolutional Neural Network), the performance of the go algorithm is greatly improved. In this paper, using CNN and MCTS were proceeding development of go algorithm. Using the manual of go learning CNN look for the best position, MCTS calculates the win probability in the game to proceed with simulation. In addition, extract pattern information of go using existing manual of go, plans to improve speed and performance by using it. This method is showed a better performance than general go algorithm. Also if it is receiving sufficient computing power, it seems to be even more improved performance.

  • PDF

CNN-based Building Recognition Method Robust to Image Noises (이미지 잡음에 강인한 CNN 기반 건물 인식 방법)

  • Lee, Hyo-Chan;Park, In-hag;Im, Tae-ho;Moon, Dai-Tchul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.341-348
    • /
    • 2020
  • The ability to extract useful information from an image, such as the human eye, is an interface technology essential for AI computer implementation. The building recognition technology has a lower recognition rate than other image recognition technologies due to the various building shapes, the ambient noise images according to the season, and the distortion by angle and distance. The computer vision based building recognition algorithms presented so far has limitations in discernment and expandability due to manual definition of building characteristics. This paper introduces the deep learning CNN (Convolutional Neural Network) model, and proposes new method to improve the recognition rate even by changes of building images caused by season, illumination, angle and perspective. This paper introduces the partial images that characterize the building, such as windows or wall images, and executes the training with whole building images. Experimental results show that the building recognition rate is improved by about 14% compared to the general CNN model.

Win-win cooperation for the development of small and medium-sized enterprises in food industry (식품산업에서 중소기업의 발전을 위한 상생협력)

  • Noh, Bongsoo
    • Food Science and Industry
    • /
    • v.52 no.4
    • /
    • pp.401-409
    • /
    • 2019
  • The need for win-win cooperation between small and medium-sized enterprises and large corporations is emphasized. For the sustainable growth of a healthy industry, the attractive parts of large companies and the capabilities of small and medium-sized enterprises must be harmonized and shared. It was also examined what items large companies should consider in selecting small and medium-sized enterprises as a partner. In the case of food producers, when considering safety issues, a comprehensive safety system should be established, not just a single factor. And cooperation is expected between small and medium-sized enterprises and other partners with new technologies such as AI, IoT, 3D printers and 5G technology. It is suggested that corporate development can be achieved by various models through win-win cooperation between large companies and small and medium-sized enterprises.

A Study on the Efficiency of Deep Learning on Embedded Boards (임베디드 보드에서의 딥러닝 사용 효율성 분석 연구)

  • Choi, Donggyu;Lee, Dongjin;Lee, Jiwon;Son, Seongho;Kim, Minyoung;Jang, Jong-wook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.668-673
    • /
    • 2021
  • As the fourth industrial revolution begins in earnest, related technologies are becoming a hot topic. Hardware development is accelerating to make the most of technologies such as high-speed wireless communication, and related companies are growing rapidly. Artificial intelligence often uses desktops in general for related research, but it is mainly used for the learning process of deep learning and often transplants the generated models into devices to be used by including them in programs, etc. However, it is difficult to produce results for devices that do not have sufficient power or performance due to excessive learning or lack of power due to the use of models built to the desktop's performance. In this paper, we analyze efficiency using boards with several Neural Process Units on sale before developing the performance of deep learning to match embedded boards, and deep learning accelerators that can increase deep learning performance with USB, and present a simple development direction possible using embedded boards.

A Methodology for Bankruptcy Prediction in Imbalanced Datasets using eXplainable AI (데이터 불균형을 고려한 설명 가능한 인공지능 기반 기업부도예측 방법론 연구)

  • Heo, Sun-Woo;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.65-76
    • /
    • 2022
  • Recently, not only traditional statistical techniques but also machine learning algorithms have been used to make more accurate bankruptcy predictions. But the insolvency rate of companies dealing with financial institutions is very low, resulting in a data imbalance problem. In particular, since data imbalance negatively affects the performance of artificial intelligence models, it is necessary to first perform the data imbalance process. In additional, as artificial intelligence algorithms are advanced for precise decision-making, regulatory pressure related to securing transparency of Artificial Intelligence models is gradually increasing, such as mandating the installation of explanation functions for Artificial Intelligence models. Therefore, this study aims to present guidelines for eXplainable Artificial Intelligence-based corporate bankruptcy prediction methodology applying SMOTE techniques and LIME algorithms to solve a data imbalance problem and model transparency problem in predicting corporate bankruptcy. The implications of this study are as follows. First, it was confirmed that SMOTE can effectively solve the data imbalance issue, a problem that can be easily overlooked in predicting corporate bankruptcy. Second, through the LIME algorithm, the basis for predicting bankruptcy of the machine learning model was visualized, and derive improvement priorities of financial variables that increase the possibility of bankruptcy of companies. Third, the scope of application of the algorithm in future research was expanded by confirming the possibility of using SMOTE and LIME through case application.

Wettability and Intermetallic Compounds of Sn-Ag-Cu-based Solder Pastes with Addition of Nano-additives (나노 첨가제에 따른 Sn-Ag-Cu계 솔더페이스트의 젖음성 및 금속간화합물)

  • Seo, Seong Min;Sri Harini, Rajendran;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.35-41
    • /
    • 2022
  • In the era of Fifth-Generation (5G), technology requirements such as Artificial Intelligence (AI), Cloud computing, automatic vehicles, and smart manufacturing are increasing. For high efficiency of electronic devices, research on high-intensity circuits and packaging for miniaturized electronic components is important. A solder paste which consists of small solder powders is one of common solder for high density packaging, whereas an electroplated solder has limitation of uniformity of bump composition. Researches are underway to improve wettability through the addition of nanoparticles into a solder paste or the surface finish of a substrate, and to suppress the formation of IMC growth at the metal pad interface. This paper describes the principles of improving the wettability of solder paste and suppressing interfacial IMC growth by addition of nanoparticles.