최근 기후변화에 대한 관심이 증대됨에 따라 미래 기후모델자료를 기반으로 연구가 다양하게 진행되고 있다. 기후변화가 적용된 자료는 미래 수자원관리, 방재를 위한 수공구조물의 설계 등 다양한 방식으로 실무에 적용되고 있다. 하지만 기후모델로부터 모의된 결과는 어느 정도 관측자료와 차이가 발생하게 되며, 이러한 계통적 오차는 모델 내부에서 해결하기가 쉽지 않다. 그렇기 때문에 기후모델로부터 모의된 결과를 보정하기 위해 편의보정 기법을 활용한다. 그리고 미래 기후모델자료는 불확실성을 내재하고 있기 때문에 다양한 편의보정 기법을 적용하여 불확실성의 범위를 확인해 보았다. 사용된 편의보정 기법으로는 Quantile Mapping(QM), Quantile Delta Mapping(QDM), Detrended Quantile Mapping(DQM), Delta Change Method(DCM)을 이용하였다. 편의보정에 적용한 확률분포형은 일반극치분포(GEV분포), Type-1 극치분포(Gumbel분포)를 사용하였다. GEV분포를 기본으로 하여 조건적으로 GEV분포를 사용할 수 없는 경우, Gumbel분포를 사용하였다. 본 연구에서는 독일의 전지구기후모델(Global Climate Model, GCM)인 MPI-ESM-LR에 RCP 8.5 사나리오를 강제장으로 하여 지역기후모델(Regional Climate Model, RCM)인 WRF를 이용하여 동역학적으로 다운스케일한 강우자료를 사용하였다. 강우자료 중에서 강릉, 인천, 부산, 목포지점에 해당하는 자료를 추출하여 연 최대 강우강도 시계열을 산정하고 4가지 편의보정 기법을 이용하여 편의보정을 하였다. 편의보정 수행된 연 최대 강우강도 시계열을 scale-invariance 기법으로 다운스케일하여 미래 IDF곡선을 유도한 뒤, 편의보정별로 유도한 IDF곡선의 비교를 통해 편의보정기법이 미래 IDF곡선에 미치는 영향을 분석하였다.
In this study, statistical analysis under both stationary and non-stationary climate was conducted for rainfall data measured in Seoul. Generalised Extreme Value (GEV) distribution and Gumbel distribution were used for the analysis. Rainfall changes under the non-stationary climate were estimated by applying time variable (t) to location parameter (${\xi}$). Rainfall depths calculated in non-stationary climate increased by 1.1 to 6.2mm and 1.0 to 4.6mm for the GEV distribution and gumbel distribution respectively from those stationary forms. Changes in annual maximum rainfall were estimated with rate of change in the location parameter (${\xi}1{\cdot}t$), and temporal changes of return period were predicted. This was also available for re-evaluating the current sewer design return period. Design criteria of sewer system was newly suggested considering life expectance of the system as well as temporal changes in the return period.
확률강우량은 하천설계, 수자원설계 및 계획을 위한 기초자료로 활용되며 최근 이상기후 및 기후변화로 인한 극치강우의 빈도 및 양적 증가로 인한 확률강우량 산정의 불확실성 분석에 대한 관심이 크게 증가하고 있다. 수문빈도 해석에 있어서 대부분 지역이 50년 이하의 수문자료가 이용되고 있으며 수문설계에서 요구되는 50년 이상의 확률강수량 추정시에는 상당한 불확실성을 내포하고 있다. 이러한 점에서 본 연구에서는 자료연수에 따른 Sampling Error와 분포형의 매개변수의 불확실성을 고려한 해석모형을 구축하고자 한다. 빈도해석에서 매개변수를 추정하기 위해서는 일반적으로 모멘트법, 최우도법, 확률가중모멘트법이 이용되고 있으나 사용되는 분포형에 따라서 통계학적으로 불확실성 구간을 정량화하는 과정이 난해할 뿐만 아니라 극치 수문자료가 Thick-Tailed분포의 특성을 가짐에도 불구하고 신뢰구간 산정시 정규분포로 가정하는 등 기존 해석 방법에는 많은 문제점을 내포하고 있다. 본 연구에서는 이러한 매개변수의 불확실성 평가에 있어서 우수한 해석능력을 발휘하는 Bayesian기법을 도입하여 분포형의 매개변수를 추정하고 매개변수 추정과 관련된 불확실성을 평가하고자 한다. 이와 별개로 자료연한에 따른 Sampling Error를 추정하기 위해서 Bootstrapping 기반의 해석모형을 구축하고자 하며 최종적으로 빈도해석시에 나타나는 불확실성을 종합적으로 검토하였다. 빈도해석을 위한 확률분포형으로 GEV(generalized extreme value)분포를 이용하였으며 Gibbs 샘플러를 활용한 Bayesian Markov Chain Monte Carlo 모의를 기본 해석모형으로 활용하였다.
수문통계분야에서는 극치 사상을 해석하기 위해 generalized extreme value (GEV), generalized logistic (GLO), Gumbel (GUM) 모형과 같은 다양한 극치분포들을 사용하여 왔다. 특히 우리나라 강우 사상의 경우 다양한 극치분포 모형 중 GEV 분포와 Gumbel 분포가 비교적 적합한 것으로 알려져 있지만 하나의 형상매개변수를 가지고 있어 각 분포 모형이 나타낼 수 있는 통계적 특성에 한계를 가지고 있다. 이러한 점에서 두 개의 형상매개변수를 가지고 있어 분포 모형이 나타낼 수 있는 통계적 특성의 범위가 넓은 분포의 적용이 필요하다. 이에 본 연구에서는 두 개의 형상매개변수를 가지고 있어 다양한 통계적 특성을 표현할 수 있는 Burr XII 분포와 우리나라 620개 지점의 강우자료의 무차원 L-moment 비를 이용하여 우리나라 강우자료의 수문학적 적용성을 검토하였다. 이를 위해 Burr XII 분포의 L-moment ratio인 L-skewness와 L-kurtosis를 유도하고 그 관계식을 이용하여 L-moment diagram을 작성하고 620개 지점이 해당 영역에 포함되는 정도를 검토하여 그 적용성을 살펴보았다. 그 결과 L-skewness가 L-kurtosis보다 상대적으로 큰 한강 유역에 해당하는 지점들에 대한 Burr XII 분포의 적용성이 우수한 것으로 나타났으며, 이는 일반적으로 많이 사용되는 GEV 또는 Gumbel 분포를 대체할 수 있는 분포가 될 가능성을 보였다고 할 수 있다.
In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using generalized extreme value (GEV) distribution and Gumbel distribution models with rainfall data collected in major cities of Korea to reevaluate the return period of sewer flooding in those cities. As a result, the probable rainfall for GEV and Gumbel distribution in non-stationary state both increased with time(t), compared to the stationary probable rainfall. Considering the reliability of ${\xi}_1$, a variable reflecting the increase of storm events due to climate change, the reliability of the rainfall duration for Seoul, Daegu, and Gwangju in the GEV distribution was over 90%, indicating that the probability of rainfall increase was high. As for the Gumbel distribution, Wonju, Daegu, and Gwangju showed the higher reliability while Daejeon showed the lower reliability than the other cities. In addition, application of the maximum annual rainfall change rate (${\xi}_1{\cdot}t$) to the location parameter made possible the prediction of return period by time, therefore leading to the evaluation of design recurrence interval.
극한강우사상의 분석은 다양한 극치 분포로 구성된 극치이론을 통해 가능하다. 일반적으로 단일 지점의 극한사상의 분석을 위한 지점빈도해석 (Point Frequency Analysis, PFA)이 다양한 재현기간에 해당하는 강우량을 추정하는데 널리 사용되어왔다. 하지만 수문기후학적 극치기록은 시간적 그리고 공간적으로 제한적이다. 따라서 모의 불확실성을 줄이고 신뢰성 높은 결과를 도출하기 위해 서로 유사한 분포를 가질 수 있는 인근 지점의 활용하는 지역빈도해석 (Regional Frequency Analysis, RFA) 방법이 개발되어 적용되고 있다. 본 연구에서는 부산, 울산, 경남지역의 기상청 종관기상관측시스템(Automated Synoptic Observing System, ASOS) 울산, 부산, 통영, 진주, 거창, 합천, 밀양, 산청, 거제, 남해지점 일강수량을 자료를 기반으로 Metropolis-Hasting 알고리즘을 사용하여 일반극치분포(Generalized Extreme Value, GEV)의 매개변수를 추정하고 PFA 및 RFA의 불확실성을 평가하고자 한다. 이러한 연구는 공간적 구성 요소(예, 지리적 좌표, 고도)를 고려하지 못하며 추가변수 (예, 공변량)를 분석에 결합할 수 없는 등의 RFA의 한계를 극복하고, 명시적으로 불확실성을 추정하여 결과의 신뢰성을 확보 할 수 있는 계층적 베이지안 모델의 개발에 도움이 되리라 기대된다.
극치강우사상에 의한 설계 홍수량의 갑작스런 증 감은 홍수, 가뭄과 같은 기상학적 요인에 기인한 재난을 발생시킨다. 많은 연구자들은 보다 정확한 확률강우량의 예측과 유출량의 예측을 위해 많은 노력을 하고 있다. 본 연구에서는 강원도 강릉 강우관측소를 대상으로 강우-빈도곡선의 불확실성 분석을 수행하였다. 관측 자료의 수집에서 발생하는 불확실성을 최소화 하고자 ARMA 모형을 이용하여 합성강우자료를 구축하였으며, 발생된 합성강우량을 Bootstrap 방법을 이용하여 대규모의 자료집단으로 발생시킴으로서 신뢰구간에 사용할 자료집단을 발생시켰다. 본 연구에서는 극치강우사상에 적합한 것으로 알려진 Gumbel 분포와 일반극치 분포(GEV 분포) 모형을 선정하였으며 각 확률분포모형에 대한 매개변수 추정방법으로 최우도법, 확률가중모멘트법 그리고 베이지안 추론방법을 사용하여 각 매개변수의 최후 추정치를 산정하였다. 또한 원 자료를 이용하여 최우도법, 확률가중모멘트법 그리고 베이지안 추론방법을 통해 매개변수를 산정 후 강우-빈도 곡선을 추정하여 합성강우자료의 Bootstrap 방법에 의해 발생된 자료로부터 산정한 강우-빈도 곡선의 신뢰구간과 비교함으로서 불확실성이 낮은 확률강우량을 산정할 수 있는 매개변수 추정방법을 평가하고자하였다.
수문자료의 계절성은 수자원관리의 관점에서 매우 중요한 요소로서 계절성의 변동은 댐의 운영, 홍수조절, 관계용수 관리 등 다양한 분야와 밀접한 관계를 가지고 있다. 그러나 지금까지의 수문 자료의 계절성 평가는 주로 이수과점에서 이루어지고 있으며 치수관점에서 극치수문량의 계절성을 평가하는 연구는 미진한 실정이다. 이는 극치수문량을 해석하는 방법론으로서 연최대치계열(annual maxima) 즉, Block Maxima가 이용됨에 따라 나타나는 문제점이다. 그러나 부분기간치계열(partial duration series)을 활용하게 되면 자료의 확충뿐만 아니라 자연적으로 극치수문량의 계절성에 대한 평가 또한 가능하다. 이러한 분석과정을 POT(peak over threshold)분석이라 하며 일정 기준값(threshold) 이상의 자료를 모두 취하여 빈도해석에 이용하는 방법으로서 기존 방법의 경우 연최대값이 일반적으로 7월과 8월에만 존재하게 되지만 POT 분석의 경우 여러 달에 걸쳐 빈도해석을 위한 자료가 구성되게 된다. 이를 빈도해석으로 연계시키기 위해서는 계절성을 비정상성으로 고려하여 모형화 할 수 있는 방법론의 개발이 필요하다. 본 연구에서는 이러한 목적을 위해서 계절성을 고려할 수 있는 비정상성빈도해석 기법의 개념을 제시하고 모형으로 개발하고자 한다. GEV 또는 Gumbel 분포의 매개변수와 계절성을 연계시키기 위해서 Fourier 급수가 활용되며 매개변수는 Bayesian 기법을 통해 최적화 된다. 이를 통하여 설계강수량의 계절적 분포를 정량적으로 해석할 수 있으며 미래의 극치강수량에 대한 분포특성 또한 확률적으로 해석이 가능하다. 본 연구에서 제안된 방법은 국내외 시간강수량자료에 적용되어 적합성과 적용성이 평가된다.
수문관측자료에서 비정상성(nonstationarity)이 관측됨에 따라 수공구조물 설계에서 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 대기-해양 시스템에 내재된 기후 변동성은 비정상성 현상과 관련이 있는 것으로 알려져 있지만, 비정상성 빈도해석은 일반적으로 선형적 추세를 기반으로 이루어지고 있다. 본 연구에서는 우리나라의 기후 변동성과 극치 강우 사상의 장기 경향성을 고려하기 위하여 기상인자를 활용한 비정상성 빈도해석을 수행하였다. 먼저, 경향성이 나타나는 11개 기상관측지점의 연 최대치 강우자료에 대하여 통계적 분해 방법인 앙상블 경험적 모드분해법을 활용해 자료에 내재된 장기 경향성을 추출하였으며, 계절에 따른 다양한 기상인자와의 상관성 분석을 수행하였다. 그 결과, 연 최대 강우 발생년도를 기준으로 전년도 가을철 AMM과 전년도 가을철 AMO, 그리고 전년도 여름철 NINO4가 10개 이상의 지점에서 연 최대치 강우자료의 장기 경향성에 유의한 영향을 미치는 것으로 나타났다. 선정된 기상인자를 일반 극치(generalized extreme value, GEV) 분포모형에 적용하여 비정상성 GEV (NS-GEV) 모형을 구축하고 기존의 선형적 추세를 고려한 NS-GEV 모형과의 AIC값을 비교하여 최적모형을 선정하였다. 선정된 모형과 기존의 선형적 추세를 고려한 NS-GEV 모형에 대한 성능 평가를 통해 기상인자를 활용한 NS-GEV 모형이 극치강우사상을 반영하여 확률강우량의 과소산정 문제를 보완할 수 있음을 확인하였다.
본 연구에서는 한반도에서 발생했던 과거 가뭄사상의 정량적 평가를 위한 가뭄심도-지속기간-생기빈도(Severity-Duration-Frequency, SDF) 곡선을 유도하기 위해서 가뭄지수를 이용한 빈도해석을 실시하였다. 분석지점으로는 4대강 유역을 중심으로 하는 기상청 산하의 서울, 대전, 대구, 광주, 부산관측소를 선정하였으며 강수자료는 1974~2010년(37년)의 강수 자료를 이용하였다. 가뭄빈도해석에는 기상학적 가뭄지수인 SPI (Standardized Precipitation Index)를 선정하였으며 확률분포형에 대한 적합도 검정에서는 일반극치분포(GEV, Generalized Extreme Value)가 최적의 확률분포형으로 선정되었다. 가뭄지수의 빈도해석 통하여 유도된 주요 관측소별 SDF (Severity-Duration-Frequency) 곡선을 이용하여 과거의 주요 가뭄사상에 대한 재현기간을 제시하였으며 1994~1995년 가뭄의 경우 남부지방을 중심으로 하는 극심한 가뭄으로서 광주관측소에서는 50~100년, 부산관측소에서는 100~200년의 높은 재현기간을 나타내었다. 그밖에 1988~1989년 가뭄의 경우 서울관측소에서는 300년의 재현기간을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.