• Title/Summary/Keyword: 일몰

Search Result 156, Processing Time 0.026 seconds

Effect of Supplementary Radiation on Growth of Greenhouse-Grown Kales (온실재배 케일의 생장에 미치는 보광효과)

  • Heo, Jeong-Wook;Kim, Hyeon-Hwan;Lee, Kwang-Jae;Yoon, Jung-Boem;Lee, Joung-Kwan;Huh, Yoon-Sun;Lee, Ki-Yeol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.38-45
    • /
    • 2015
  • BACKGROUND: For commercial production of greenhouse crops under shorter day length condition, supplementary radiation has been usually achieved by the artificial light source with higher electric consumption such as high-pressure sodium, metal halide, or incandescent lamps. Light-Emitting Diodes (LEDs) with several characteristics, however, have been considered as a novel light source for plant production. Effects of supplementary lighting provided by the artificial light sources on growth of Kale seedlings during shorter day length were discussed in this experiment. METHODS AND RESULTS: Kale seedlings were grown under greenhouse under the three wave lamps (3 W), sodium lamps (Na), and red LEDs (peak at 630 nm) during six months, and leaf growth was observed at intervals of about 30 days after light exposure for 6 hours per day at sunrise and sunset. Photosynthetic photon flux (PPF) of supplementary red LEDs on the plant canopy was maintained at 0.1 (RL), 0.6 (RM), and $1.2(RH){\mu}mol/m^2/s$ PPF. PPF in 3 W and Na treatments was measured at $12{\mu}mol/m^2/s$. Natural light (NL) was considered as a control. Leaf fresh weight of the seedlings was more than 100% increased under the 3 W, Na and RH treatment compared to natural light considering as a conventional condition. Sugar synthesis in Kale leaves was significantly promoted by the RM or RH treatment. Leaf yield per $3.3m^2$ exposed by red LEDs of $1.2{\mu}mol/m^2/s$ PPF was 9% and 16% greater than in 3W or Na with a higher PPF, respectively. CONCLUSION: Growth of the leafy Kale seedlings were significantly affected by the supplementary radiation provided by three wave lamp, sodium lamp, and red LEDs with different light intensities during the shorter day length under greenhouse conditions. From this study, it was suggested that the leaf growth and secondary metabolism of Kale seedlings can be controlled by supplementary radiation using red LEDs of $1.2{\mu}mol/m^2/s$ PPF as well as three wave or sodium lamps in the experiment.

황금배 동녹 방지용 및 갈색배 방균.방충처리용 봉지 개발

  • 류정용;여성국;신종호;송봉근;한점화
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.148-149
    • /
    • 2000
  • 황금배는 1967년에 신고에 이십세기를 교배하여 1977년 1차선발과 1982년 2차선발을 거 쳐 1984년 최종선발, 명명한 품종으로, 당도가 높고 육질이 부드러워서 최근 몇년 사이에 캐 나다, 미국, 호주, 그리고 유럽 지역에서의 수요가 급증하고 있는 수출전망이 매우 밝은 품 종 중의 하나이다(92년 재배면적 lOha 수출량 5. 8M/T, 95년 재배면적 150ha 수출량 2 200.6M/T), 황금배는 비교적 대과이고 과형은 원형에 가까운 편원형으로서 사과 골든처럼 과피가 황금색이고 과육은 연황백색으로 투명하며 보기에 극히 미려한 특징이 있다. 아울러 육질이 유연치밀하고 과즙이 극히 많으며 당도가 높아 13$^{\circ}$ Bx이상, 15도 Bx까지 측정되는 둥 감산이 적화되어 맛이 극히 우수하다. 그러나 이러한 황금배는 동녹, 흑반병 등 병충해로 인한 상품가치의 하락으로 현재 수요를 충족시키지 못하고 있는 실정이다. 1 16세기부터 씌워진 과실봉지는 초기 병해충을 방지할 목적만으로 사용되어 왔지만, 현 재는 방균과 방충의 효과와 함께 자연현상의 최적화를 위한 차광성, 발수성, 투기성을 조절 하며 과실의 외관까지 영향을 미치는 바, 과실봉지의 기능성 부여를 위해서는 고도의 기술 력이 요구되고 있다 하겠다. 상기한 배에 방균방충처리된 과설봉지를 씌워서 재배하면 농 약 살포횟수를 줄이고 배에 농약이 직접 묻지 않아 배의 농약오염을 예방할 수 있으며, 봉 지 안으로의 해충이나 균의 침투를 원천적으로 봉쇄할 수 있다. 그러나 기존의 황금배용 봉 지는 비록 기타 병충해 피해를 방지하는 효과는 있었으나, 동녹을 억제하는 효력이 다소 미 흡하였다. 과피의 비정상적인 코르크화로 인해 발생하는 동녹은 과피의 물리적 할렬과 생리적 장 해에 의해 발생하는 것으로 알려져 있다(永澤 1940). 과실이 비대해짐에 따라 과피의 기공 (과점)이 할렬하면서 코르크화가 진행되는데 그 발생정도나 시기는 배의 품종에 따라 다르 나 일반적으로 코르크화는 기상조건, 특히 습도와 밀접한 관련이 있다고 알려져 있다 황금 배의 재배에 봉지를 적용하면 일반적으로 과피의 코르크화가 억제되는데 그러한 이유는 다 음과 같이 설명할 수 있다. 과실은 하루를 주기로 하여 수축과 팽창을 반복하면서 비대화하 는데 이러한 현상은 과실 내의 수분 조건에 따르는 것으로, 봉지재배의 경우 무대재배보다 단기간에 변화되는 습도의 범위가 좁아 급변을 방지하기에 과점의 할렬이 완화될 수 있다. 즉, 봉지를 씌웅으로서 봉지 내의 대기 환경이 외기보다 안정적으로 유지되고 직사광선이나 농약 및 마찰로부터 과실을 보호해 주기에 동녹이 어느 정도 방지될 수 있는 것이다. 그러나 기존의 황금배봉지는 동녹의 정도를 완화시킬 뿐 완전히 방지할 수 없었으며, 봉지를 적 용한 재배조건에서의 동녹발생 기구를 정확히 이해하지 못했었기에 효과적으로 봉지의 기능 을 개선하는 것이 불가능하였다. 과설의 미려도는 과실의 맛과 함께 그 가치를 결정짓는 중요한 물성으로서 우리나라 황 금배 재배환경과 특성에 알맞은 배봉지의 제작이 선결될 때, 배 품질의 향상, 안정된 공급이 가능하게 될 것이며 아울러 농가의 수업증대와 수출 경쟁력 강화가 이루어질 수 있을 것으로 판단된다. 이러한 측면에서 황금배 재배농가가 당면한 동녹발생의 문제점을 신속한 해결 을 위한 새로운 기능성 국산 황금배 봉지의 개발이 절실히 요구되고 있다. 위와 같은 문제를 해결하기 위하여 본 연구에서는 과실봉지의 종류간에 동녹발생 정도 가 상이한 점에 예의 주시하여 다양한 봉지의 적용실험을 통해 다음과 같은 결과를 얻었다. 황금배의 동녹 발생 정도는 배봉지의 발수성과 투기 및 투습도에 의해 크게 영향받는다. 상기한 바와 같이 과점의 코르크화로 인해 동녹이 발생된다고 할 때, 봉지 내의 습기 및 웅결수의 양은 황금배의 동녹에 중대한 영향을 미친다. 태양광이 내려찍는 낮 시간동안 황 금배는 증산작용을 하며 습기를 배출하는데 봉지 내의 온도가 높은 낮 시간 동안 수분이 습기로 존재하지만 기온이 급격히 떨어지는 일몰 이후에는 상대습도가 높아짐에 따라 결로 현상으로 인해 응결수가 된다. 이때 응결수와 접촉한 과피는 건조한 상태보다 세균의 침입 이 용이할 뿐만 아니라 기공(과점)의 호홉에 지장이 초래됨에 따라 과점의 할렬이 더욱 조 장되어 코르크화를 유발하고 결과적으로 동녹이 발생한다고 판단된다. 따라서 만일에 봉지 의 투기, 투습도가 양호하여 봉지 내의 과다한 수분이 충분히 배출될 수 있었다면, 수분의 응결을 피하고 동녹을 완화시킬 수 있을 것이라 판단되었다.

  • PDF

A Study on the Characteristics of Projects Following the Promotion of Private Park Special Projects (민간공원특례사업의 추진에 따른 사업특성에 관한 연구)

  • Gweon, Young-Dal;Park, Hyun-Bin;Kim, Dong-Pil
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.112-124
    • /
    • 2021
  • This study was conducted to examine and analyze local governments, park status, project characteristics, and the implementation in detail for private park special projects across the country as a means of responding to the sunsetting of urban parks. As a result of the analysis, first, the private park special project, was found to be mainly implemented in cities with a population of more than 100,000, so there was a limit to the application on military installations or in local small cities. Therefore, rather than applying the special system collectively, it was judged that institutional flexibility, considering the characteristics and size of local government, was needed. Second, the current special projects by the park creation donation collection method shows monotonous development centered on apartment houses, so it is necessary to diversify the development by introducing a park preservation method that purchases and donates park sites. Third, it was found that the area standard needs to be eased to less than 50,000m2 to include parks with high utilization and good accessibility in urban areas of large cities, as the type and area of parks are limited. Fourth, most special projects are mountain parks, which are feared to damage the natural terrain and skyline, so separate ordinances should be established and applied, and development approaches should be made to allow nature and parks to coexist with the setting of detailed building guidelines for each type of facility. The guidelines should include, first, after the nationwide private park special projects are completed, standards for appropriate returns for similar projects should be established, institutional standards such as the recovery of excess profits should be established, and environmental reviews should be conducted. Second, it was found that local governments should institutionalize the composition of private consultations to promote the efficient management of projects through a cooperative system, and third, a roadmap for maintenance after the donation of special parks should be established.

A Method of Reproducing the CCT of Natural Light using the Minimum Spectral Power Distribution for each Light Source of LED Lighting (LED 조명의 광원별 최소 분광분포를 사용하여 자연광 색온도를 재현하는 방법)

  • Yang-Soo Kim;Seung-Taek Oh;Jae-Hyun Lim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.19-26
    • /
    • 2023
  • Humans have adapted and evolved to natural light. However, as humans stay in indoor longer in modern times, the problem of biorhythm disturbance has been induced. To solve this problem, research is being conducted on lighting that reproduces the correlated color temperature(CCT) of natural light that varies from sunrise to sunset. In order to reproduce the CCT of natural light, multiple LED light sources with different CCTs are used to produce lighting, and then a control index DB is constructed by measuring and collecting the light characteristics of the combination of input currents for each light source in hundreds to thousands of steps, and then using it to control the lighting through the light characteristic matching method. The problem with this control method is that the more detailed the steps of the combination of input currents, the more time and economic costs are incurred. In this paper, an LED lighting control method that applies interpolation and combination calculation based on the minimum spectral power distribution information for each light source is proposed to reproduce the CCT of natural light. First, five minimum SPD information for each channel was measured and collected for the LED lighting, which consisted of light source channels with different CCTs and implemented input current control function of a 256-steps for each channel. Interpolation calculation was performed to generate SPD of 256 steps for each channel for the minimum SPD information, and SPD for all control combinations of LED lighting was generated through combination calculation of SPD for each channel. Illuminance and CCT were calculated through the generated SPD, a control index DB was constructed, and the CCT of natural light was reproduced through a matching technique. In the performance evaluation, the CCT for natural light was provided within the range of an average error rate of 0.18% while meeting the recommended indoor illumination standard.

Effect of Shading and Supplemental Lighting for Greenhouse Cultivation of Cucumber in Summer Season (하절기 오이 온실재배 시 차광 및 보광 효과)

  • Jin Yu;Ji Hye Yun;So Yeong Hwang;Eun Won Park;Jeong Hun Hwang;Hyeong Eun Choi;Jeong Kil Koo;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • High solar radiation in summer season causes excessive respiration of crops and reduces photosynthesis. In addition, the rainy season, which mainly occurs in summer, causes a low light condition inside the greenhouse. A low light condition can reduce crop growth and yield. This study was conducted to evaluate the effect of shade and supplemental lighting on the growth and yield of cucumber during summer season. Cucumber grafted seedlings were transplanted in two plastic greenhouses on August 30, 2022. To reduce the light intensity inside the greenhouse, a 50% shading screen was installed in one greenhouse. Supplemental lighting was conducted from September 7, 2022 to October 20, 2022. HPS (high-pressure sodium lamp), W LED (white LED, red:green:blue = 5:3:2), and RB LED (combined red and blue LED, red:blue = 7:3) were used for supplemental lighting sources, and non-treated (nonsupplemental lighting) was as the control. The supplemental lighting was conducted before sunrise and after sunset for 2 hours with a photosynthetic photon flux density of 150 ± 20 µmol·m-2·s-1. The plant height, leaf length, leaf width, and SPAD value tended to increase in the shading group. RB LED increased stem diameter regardless of shading treatment. Fresh and dry weights of fruits were not significantly different in shading and supplemental lighting. Average fresh weight of fruits was not significantly different among supplemental lighting as the harvest date passed. In conclusion, in this study 50% shade treatment significantly improved the growth of cucumber during the summer season. In addition, the growth and fruit characteristics are better than the control without supplemental lighting. This study can be used as basic research data for applying supplemental lighting technology to cucumber cultivation.

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.