프로세스 구동시마다 캐시 이미지를 메모리로부터 버스트 로딩하여 초기 캐시 실패를 줄이는 방법은 프로그램의 시작으로부터 초기화 부분의 지연을 줄이고 에너지 소모를 줄이는 데 효과적이다. 하지만 로딩에 사용하기 위한 적절한 캐시 이미지는 컴파일러와 인스톨러 등 소프트웨어적인 접근 방법을 이용하여 적절한 캐시 이미지를 생성하는 과정이 필요하며, 동적인 수행 특성을 보이는 프로세스의 경우 비효율적이다. 본 논문은 이러한 손실에 주목하여, 하드웨어를 부가하여 캐시 이미지를 동적으로 생성하고 관리하는 방법을 제안하고자 한다. 시뮬레이션 결과에 따르면 제안한 방법을 사용할 경우 프로그램의 캐시 필요량에 따른 적절한 이미지 크기를 유지할 수 있어 기존의 캐시 이미지 로딩 기법을 더욱 효율적으로 개선할 수 있었다.
이 논문에서는 기계학습 워크로드의 특징을 분석하고 이를 기반으로 기계학습 워크로드의 성능 향상을 위한 분산 인-메모리 캐싱 기법을 제안한다. 기계학습 워크로드의 핵심은 모델 학습이며 모델 학습은 컴퓨팅 집약적 (Computation Intensive)인 작업이다. 쿠버네티스 기반 클라우드 환경에서 컴퓨팅 프레임워크와 스토리지를 분리한 구조에서 기계학습 워크로드를 수행하는 것은 자원을 효과적으로 할당할 수 있지만, 네트워크 통신을 통해 IO가 수행되야 하므로 지연이 발생할 수 있다. 이 논문에서는 이런 환경에서 수행되는 머신러닝 워크로드의 성능을 향상하기 위한 분산 인-메모리 캐싱 기법을 제안한다. 특히, 제안하는 방법은 쿠버네티스 기반의 머신러닝 파이프라인 관리 도구인 쿠브플로우를 고려하여 머신러닝 워크로드에 필요한 데이터를 분산 인-메모리 캐시에 미리 로드하는 새로운 방법을 제안한다.
최근 소셜 미디어의 성장과 디지털 기기의 활용이 증가함에 따라 데이터가 기하급수적으로 급증하고 있다. 이러한 대용량의 데이터를 효율적으로 처리하기 위해 분산 메모리 처리 시스템을 사용한다. 하지만 분산 환경에서 특정 노드에 부하가 집중이 되면 노드의 성능이 저하되는 문제가 발생한다. 본 논문은 분산 메모리 환경에서 노드의 부하를 적절하게 분배하는 부하 분산 기법을 제안한다. 제안하는 기법은 노드의 부하를 관리하기 위해 핫 데이터를 여러 노드에 복제하고 노드가 추가되거나 삭제될 때 노드의 부하를 고려하여 데이터를 이주시킨다. 클라이언트는 핫 데이터의 메타데이터 정보를 유지하여 직접 노드에 접근함으로써 중앙 서버의 접근을 감소시킨다. 성능 평가를 통해 제안하는 부하 분산 관리 기법이 기존에 캐시 관리 기법에 비해 우수함을 입증한다.
DRAM 기반의 인메모리 캐시는 고비용으로 인해 용량을 늘리는 데에는 한계가 있다. 이를 위해 압축을 이용하여 더 많은 데이터를 캐시하는 기법들이 연구되어 왔다. 그러나 압축은 높은 처리부하와 반응 지연을 야기한다. 본 논문에서는 섀넌 엔트로피를 통해 파일의 압축률을 낮은 오버헤드를 통해 고속으로 예측하여, 높은 압축률을 가진 파일만 압축하는 선택적 압축 기법을 제안하였다. 또한 이를 파일시스템 내에서 실제 사용이 가능하도록 커널 레벨에서 파일 시스템을 위한 인메모리 캐시를 제공하도록 구현하였다. 실험 결과 선택적 압축 기법은 비 압축에 비해 약 18%의 실행시간 감소를 보이며, 전체 캐시 데이터 압축 방법에 비해서도 캐시 히트율의 감소에 의한 성능하락을 최소화 시키고, 동시에 압축에 대한 오버헤드를 줄여, 7.5%의 실행시간을 감소시킬 수 있음을 보였다. 또한 압축에 사용되는 CPU사용시간을 모두 압축 했을 때와 비교하여 28%감소시킬 수 있음을 보여주었다.
데이터 응답 속도는 사용자 경험과 직결되기 때문에 클라우드 서비스의 중요한 이슈이다. 그렇기 때문에 사용자의 요청에 빠르게 응답하기 위하여 인-메모리 데이터베이스는 클라우드 기반 응용 프로그램에 널리 사용되고 있다. 하지만, 현재 인-메모리 데이터베이스는 대부분 연결리스트 기반의 해시 테이블로 구현되어 있어 상수 시간의 응답을 보장하지 못한다. 쿠쿠 해싱(cuckoo hashing)이 대안으로 제시되었지만, 할당된 메모리의 반만 사용할 수 있다는 단점이 있었다. 이후 버킷화 쿠쿠 해싱(bucketized cuckoo hashing)이 메모리 효율을 개선하였으나 삽입 연산시의 오버헤드를 여전히 극복하지 못하였다. 본 논문에서는 BCH의 삽입 성능과 탐색 성능을 동시에 향상시키는 데이터 관리 방법인 월 쿠쿠(wall cuckoo)를 제안한다. 월 쿠쿠의 핵심 아이디어는 버킷 내부의 데이터를 사용된 해시 함수에 따라 분리하는 것이다. 이를 통하여 버킷의 탐색 범위가 줄어들어 접근해야 하는 슬롯의 수를 줄일 수 있는데, 이렇게 탐색 연산의 성능이 향상되기 때문에 탐색 과정이 포함되어 있는 삽입 연산 또한 개선된다. 분석에 따르면, 월 쿠쿠에서의 슬롯 접근 횟수 기댓값은 BCH의 기댓값보다 작다. 우리는 월 쿠쿠와 BCH, 정렬 쿠쿠를 비교하는 실험을 진행하였으며, 각 메모리 사용률(10%-95%)에서 월 쿠쿠의 탐색 및 삽입 연산이 다른 기법보다 더 적은 슬롯 접근 횟수를 가지는 것을 보였다.
최근 소셜 미디어와 모바일 장비들의 발달로 인해 그래프 데이터들이 다양한 분야에서 활용되고 있다. 이와 함께 대용량 그래프 데이터 처리 과정에서 입출력 비용을 감소시키기 위한 캐싱 기법에 대한 연구들이 진행되고 있다. 본 논문에서는 그래프 토폴로지의 특징인 그래프의 연결성과 과거의 서브 그래프 사용 이력을 고려하여 다중 계층 캐싱 기법을 제안한다. 제안하는 기법은 캐시를 Used Data Cache와 Prefetched Cache로 구분한다. Used Data Cache는 자주 사용되는 서브 그래프 패턴에 따라 가중치를 부여하여 데이터를 캐싱하고 Prefetched Cache는 사용되지는 않았지만 최근 사용된 데이터의 주변 데이터들이 사용될 가능성이 높은 데이터를 캐싱한다. 그래프 패턴을 추출하기 위해 과거의 이력 정보를 활용하여 패턴을 추출하였다. 자주 사용되는 서브 그래프들이 다시 사용될 것을 예측하여 가중치를 부여하여 캐싱한다. 최근 사용된 데이터의 주변 데이터들이 사용 될 것을 예측하여 캐싱한다. 각각의 캐시에 캐싱된 데이터들을 관리하고 메모리가 가득 찰 경우 사용될 가능성이 낮은 데이터와 새로운 데이터를 교체하는 전략을 제안한다. 성능 평가를 통해 제안하는 캐싱 기법이 기존의 캐시 관리 기법에 비해 우수함을 증명한다.
최근 3D TV나 영화, 증강현실과 같은 대용량 고화질의 영상 응용분야가 확산됨에 따라 빠른속도로 영상을 처리하는 것이 요구되고 있다. 여러개의 프로세서로 구성되어 병렬처리 성능을 극대화 시킬 수 있는 SIMD구조의 컴퓨터는 다양하고 많은 양의 데이터들을 처리하는 것을 가속화한다. 다중접근기억장치인 MAMS는 여러개의 PE와 고성능 SIMD 구조에 최적화된 시스템으로 MAMS는 메모리 모듈을 $M{\times}N$의 2-D array 개념을 적용하여 X, Y 좌표 및 임의의 간격으로 pq개의 데이터 각각에 수평, 수직, 대각선, 역대각선, 블록의 다양한 방식으로 충돌없이 접근하며, 이 메모리모듈(MM)의 개수 m은 pq 개수보다 큰 소수이다. MAMS-PP4는 4개의 PE와 5개의 MM로 구성되어 기존에 구현된 바 있다. 이 논문에서는 MAMS-PP4의 확장으로 16개의 PE와 17개의 MM으로 구성된 MAMS-PP16에 대한 영상처리 알고리즘의 구현과 그에 따른 성능평가에 대해 소개한다. MAMS-PP16의 인스트럭션 포맷은 64비트로 확장되어 새로 설계 되었으며 특정 어플리케이션의 추가와 새로운 인스트럭션이 포함되어 있다. 본 논문에서는 구현된 알고리즘이 수행될 수 있도록 MAMS-PP16의 시뮬레이터를 개발하였다. 이 시뮬레이터를 통해 구현된 영상처리 알고리즘을 수행함으로서 MAMS-PP16의 성능이 향상되었음을 확인하였다. 영상처리 알고리즘 중 피라미드 기법을 적용하여 수행한 결과, 캐시를 사용하는 Serial processor에서는 랜덤한 응답인 반면, 캐시를 사용하지 않는 MAMS-PP16에서 일정한 응답을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.