• Title/Summary/Keyword: 인휠 모터

Search Result 29, Processing Time 0.029 seconds

Development of Algorithm for Advanced Driver Assist based on In-Wheel Hybrid Driveline (인휠 전기 구동 기반의 능동안전지원 알고리즘 개발)

  • Hwang, Yun-Hyoung;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.1-8
    • /
    • 2017
  • This paper presents the development of an adaptive cruise control (ACC) system, which is one of the typical advanced driver assist systems, for 4-wheel drive hybrid in-wheel electric vehicles. The front wheels of the vehicle are driven by a combustion engine, while its rear wheels are driven by in-wheel motors. This paper proposes an adaptive cruise control system which takes advantage of the unique driveline configuration presented herein, while the proposed power distribution algorithm guarantees its tracking performance and fuel efficiency at the same time. With the proposed algorithm, the vehicle is driven only by the engine in normal situations, while the in-wheel motors are used to distribute the power to the rear wheels if the tracking performance decreases. This paper also presents the modeling of the in-wheel motors, hybrid in-wheel driveline, and integrated ACC control system based on a commercial high-precision vehicle dynamics model. The simulation results obtained with the model are presented to confirm the performance of the proposed algorithm.

Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors (전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

Thermal Characteristics of Oil-cooled In-wheel Motor in Electric Vehicles (전기자동차용 유냉식 인휠 모터의 방열 특성 연구)

  • Lim, Dong Hyun;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.29-34
    • /
    • 2014
  • Cooling the in-wheel motor in electric vehicles is critical to its performance and durability. In this study, thermal flow analysis was conducted by evaluating the thermal performance of two conventional cooling models for in-wheel motors under the continuous rating base speed condition. For conventional model #1, in which cooling oil was stagnant in the lower end of the motor, the maximum temperature of the coil was $221.7^{\circ}C$; for conventional model #2, in which cooling oil was circulated through the exit and entrance of the housing and jig, the maximum temperature of the coil was $155.4^{\circ}C$. Therefore, both models proved unsuitable for in-wheel motors since the motor control specifications limited the maximum temperature to $150^{\circ}C$.

A control algorithm for driving stability improvement of in-wheel motors vehicle (인휠모터 차량의 주행 안정화 제어 알고리즘 연구)

  • Choe, Seung-Hoe;Kim, Jin-Sung;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, a control algorithm for the improvement of yaw and velocity stability of electrical vehicle with two or four in-wheel motors is proposed. The vehicle is modeled with independently operative in-wheel motor wheels. Different frictions on the wheels are regarded as disturbances, which causes driving instability. In this situation the proposed algorithm enables stabilizing the yaw motion and velocity of vehicle simultaneously. The proposed PID controller is composed with two techniques, which enhance the disturbance reject and point tracking performances. One is nonlinear gain function and the other one is improved integral controller operating as time based weight function. Simulation is conducted to reveal its efficient performance.

  • PDF

Multi D.O.F Robot Platform Using In-Wheel Motors (인휠모터를 이용한 다자유도 기동 모듈형 모빌리티 플랫폼)

  • Chan-Woo Yang;Su-Jong Ha;Geon-Woo Yun;Hyung-Woo Kang;Seo-Yeon Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.878-879
    • /
    • 2023
  • 본 프로젝트에서는 BLDC 인휠모터를 사용하여 조향각에 제약이 없는 다자유도 기동 모빌리티 플랫폼을 구현하고 로봇 모듈화로 정비 편의성과 범용성을 높인 자율 모빌리티 플랫폼의 개발로 사용편의성 뿐만 아니라 산업 전반에서 발생하는 안전사고 리스크 관리에 도움이 되고자 한다.

A Study on Cooling Performance of In-wheel Motor for Green Car (그린카용 인휠 모터의 냉각 성능에 관한 연구)

  • Jung, Jung-Hun;Kim, Sung-Chul;Hong, Jung-Pyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The in-wheel motor used in green car was designed and constructed for an electric direct-drive traction system. It is difficult to connect cooling water piping because the in-wheel motor is located within the wheel structure. In the air cooling structure for the in-wheel motor, a outer surface on the housing is provided with cooling grooves to increase the heat transfer area. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the in-wheel motor under the effects of motor speed and heat generation. In order to check the problem of heat release, the analysis has been performed using conjugate heat transfer (conduction and convection). As a result, flow fields and temperature distribution inside the in-wheel motor were obtained for base speed condition (1250 rpm) and maximum speed condition (5000 rpm). Also, the thermo-flow characteristics analysis of in-wheel motor for vehicles was performed in consideration of ram air effect. Therefore, we checked the feasibility of the air cooling for the housing geometry having cooling grooves and investigated the cooling performance enhancement.

Electric Vehicle-Drone Transforming Mobility with AFPM (AFPM을 적용한 전기차-드론 트랜스포밍 모빌리티)

  • Myeong-Chul Park;Jun-Ho Lee;Ui-Yeon Gwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.271-272
    • /
    • 2024
  • 현재 자동차 산업은 내연기관에서 전기차 시스템으로 접어들고 있다. 전 세계적으로 탄소 중립 정책이 이를 가속화하고 있으며, 자동차 제조사들은 기존 내연기관 시스템으로는 불가능했던 기술들을 개발하고 있다. 대부분의 전기차에는 PMSM이 적용되고 있는데 부피가 크고 무거우며 토크 밀도가 낮다는 단점이 있다. AFPM은 기존 PMSM의 단점을 개선한 모터로, 부피와 무게가 작으며 토크밀도가 높다는 장점이 있어 전기차의 In-Wheel Motor System과 UAM에 적용되는 모터이다. 하지만 전기차는 도로 주행만 가능하고 UAM은 비행만 할 수 있기 때문에, 미래 모빌리티인 전기자동차와 UAM이 통합된 모빌리티를 개발하고자 한다. 본 과제에 적용되는 AFPM모터는 PMSM의 단점을 보완할 수 있기 때문에 전기차-UAM 트랜스포밍 모빌리티의 모터로 적합하다. 이 모빌리티는 자동차와 UAM의 역할을 모두 수행할 수 있어 효율적인 이동을 돕고 도시의 교통 인프라 문제를 완화할 수 있다.

  • PDF

Design of the Power Assist Controller for the In-Wheel Type Smart Wheelchair (인휠형 스마트 휠체어를 위한 힘 보조 제어기 설계)

  • Kong, Jung-Shik;Baek, Seung-Yub
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • This paper presents the design of the power-assisted controller for the in-wheel type smart wheelchair by using torque estimation that is predicted by relationship between input voltage and output wheel angular velocity. Nowadays, interest of the moving assistant aids is increased according to the increase in population of the elderly and the handicapped person. However some of the moving assistant aids have problems. For example, manual wheelchair has difficulty moving at the slope, because users lack the muscular strength of their arm. In electric wheelchair case, users should be weak by being decreased muscles of upper body. To overcome these problems, power-assisted electric wheelchair are proposed. Most of the power-assisted electric wheelchair have the special rims that can measure the user's power. In here, the rims have to be designed to install the sensors to measure user's power. In this paper, we don't design the rim to measure the man power. To predict the man power, we propose a control algorithm of the in-wheeled electric wheelchair by using torque estimation from the wheel. First, we measure the wheel velocity and voltage at the in-wheel electric wheelchair. And then we extract driving will forces by using proposed mathematical model. Also they are applied at the controller as the control input, we verify to be able to control in-wheel type smart wheelchair by using simulation.