• Title/Summary/Keyword: 인휠모터

Search Result 29, Processing Time 0.027 seconds

Development of Algorithm for Advanced Driver Assist based on In-Wheel Hybrid Driveline (인휠 전기 구동 기반의 능동안전지원 알고리즘 개발)

  • Hwang, Yun-Hyoung;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.1-8
    • /
    • 2017
  • This paper presents the development of an adaptive cruise control (ACC) system, which is one of the typical advanced driver assist systems, for 4-wheel drive hybrid in-wheel electric vehicles. The front wheels of the vehicle are driven by a combustion engine, while its rear wheels are driven by in-wheel motors. This paper proposes an adaptive cruise control system which takes advantage of the unique driveline configuration presented herein, while the proposed power distribution algorithm guarantees its tracking performance and fuel efficiency at the same time. With the proposed algorithm, the vehicle is driven only by the engine in normal situations, while the in-wheel motors are used to distribute the power to the rear wheels if the tracking performance decreases. This paper also presents the modeling of the in-wheel motors, hybrid in-wheel driveline, and integrated ACC control system based on a commercial high-precision vehicle dynamics model. The simulation results obtained with the model are presented to confirm the performance of the proposed algorithm.

Multi D.O.F Robot Platform Using In-Wheel Motors (인휠모터를 이용한 다자유도 기동 모듈형 모빌리티 플랫폼)

  • Chan-Woo Yang;Su-Jong Ha;Geon-Woo Yun;Hyung-Woo Kang;Seo-Yeon Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.878-879
    • /
    • 2023
  • 본 프로젝트에서는 BLDC 인휠모터를 사용하여 조향각에 제약이 없는 다자유도 기동 모빌리티 플랫폼을 구현하고 로봇 모듈화로 정비 편의성과 범용성을 높인 자율 모빌리티 플랫폼의 개발로 사용편의성 뿐만 아니라 산업 전반에서 발생하는 안전사고 리스크 관리에 도움이 되고자 한다.

Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors (전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

Electric Vehicle-Drone Transforming Mobility with AFPM (AFPM을 적용한 전기차-드론 트랜스포밍 모빌리티)

  • Myeong-Chul Park;Jun-Ho Lee;Ui-Yeon Gwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.271-272
    • /
    • 2024
  • 현재 자동차 산업은 내연기관에서 전기차 시스템으로 접어들고 있다. 전 세계적으로 탄소 중립 정책이 이를 가속화하고 있으며, 자동차 제조사들은 기존 내연기관 시스템으로는 불가능했던 기술들을 개발하고 있다. 대부분의 전기차에는 PMSM이 적용되고 있는데 부피가 크고 무거우며 토크 밀도가 낮다는 단점이 있다. AFPM은 기존 PMSM의 단점을 개선한 모터로, 부피와 무게가 작으며 토크밀도가 높다는 장점이 있어 전기차의 In-Wheel Motor System과 UAM에 적용되는 모터이다. 하지만 전기차는 도로 주행만 가능하고 UAM은 비행만 할 수 있기 때문에, 미래 모빌리티인 전기자동차와 UAM이 통합된 모빌리티를 개발하고자 한다. 본 과제에 적용되는 AFPM모터는 PMSM의 단점을 보완할 수 있기 때문에 전기차-UAM 트랜스포밍 모빌리티의 모터로 적합하다. 이 모빌리티는 자동차와 UAM의 역할을 모두 수행할 수 있어 효율적인 이동을 돕고 도시의 교통 인프라 문제를 완화할 수 있다.

  • PDF

A control algorithm for driving stability improvement of in-wheel motors vehicle (인휠모터 차량의 주행 안정화 제어 알고리즘 연구)

  • Choe, Seung-Hoe;Kim, Jin-Sung;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, a control algorithm for the improvement of yaw and velocity stability of electrical vehicle with two or four in-wheel motors is proposed. The vehicle is modeled with independently operative in-wheel motor wheels. Different frictions on the wheels are regarded as disturbances, which causes driving instability. In this situation the proposed algorithm enables stabilizing the yaw motion and velocity of vehicle simultaneously. The proposed PID controller is composed with two techniques, which enhance the disturbance reject and point tracking performances. One is nonlinear gain function and the other one is improved integral controller operating as time based weight function. Simulation is conducted to reveal its efficient performance.

  • PDF

Yaw Moment Control for Modification of Steering Characteristic in Rear-driven Vehicle with Front In-wheel Motors (전륜 인휠모터 후륜구동 차량의 선회 특성 변형을 위한 요모멘트 제어)

  • Cha, Hyunsoo;Joa, Eunhyek;Park, Kwanwoo;Yi, Kyongsu;Park, Jaeyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.6-13
    • /
    • 2021
  • This paper presents yaw moment control for modification of steering characteristic in rear-driven vehicle with front in-wheel motors (IWMs). The proposed control algorithm is designed to modify yaw rate response of the test vehicle. General approach for modification of steering characteristic is to define the desired yaw rate and track the yaw rate. This yaw rate tracking method can cause the chattering problem because of the IWM actuator response. Large overshoot and settling time in IWM torque response can amplify the oscillation in control input and yaw rate. To resolve these problems, open-loop IWM controller for cornering agility was designed to modify the understeer gradient of the vehicle. The proposed algorithm has been investigated via the computer simulations and the vehicle tests. The performance evaluation has been conducted on dry asphalt using E-segment test vehicle. The performance of the proposed algorithm has been compared to general yaw rate tracking algorithm in the vehicle tests. It has been shown that the proposed control law improved the cornering agility without chattering problem.

A Fundamental Study on the Control of Ride Comfort and Attitude for In-wheel Motor Vehicles (인휠모터 구동차량의 승차감 및 자세제어를 위한 기초적 연구)

  • Kim, Y.R.;Park, C.;Wang, G.N.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-97
    • /
    • 2012
  • It is being accelerated to develop environment-friendly vehicles to solve problems on the energy and environment of earth. The electric driving motor commonly installed in these vehicles has the excellent control capability such as fast response and accurate generation to torque control command. Especially, in-wheel motor has the additional merit such as independently driving each wheel in vehicle. Recently, being developed various control algorithm to enhance the safety and stability of vehicle motion using actively the merits of in-wheel motor. In addition to that, being issued the possibility of enhancing the ride comfort and attitude of vehicle motion such as pitching and rolling. In this paper, investigate the theoretical relationship between the braking/driving force and the motion of sprung mass of vehicle and propose the control method to enhance the ride comfort and attitude of vehicle motion. The proposed control method is proved through the simulation with vehicle model provided by TruckSim software which is commercial one and specializes in vehicle dynamics.

Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability (차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발)

  • Yang, D.H.;Park, J.H.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF