• Title/Summary/Keyword: 인터페로메터

Search Result 2, Processing Time 0.014 seconds

Analysis of Direction Finding Accuracy for Amplitude-Phase Comparison and Correlative Interferometer Method (진폭-위상 복합비교 기법과 상관형 위상비교 기법의 방향탐지 정확도 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.195-201
    • /
    • 2016
  • In this paper, we present the direction finding accuracy of correlative interferometer method and amplitude-phase comparison method. Spiral antennas are used for amplitude-phase comparison method and blade antennas are used for correlative interferometer method. Those are made for uniform circular array (UCA) direction finding antenna systems. We simulate the accuracy of azimuth angle with 3 antennas UCA when SNR is 20 dB and baseline is 0.5 wave length. Correlative interferometer method has better accuracy than amplitude-phase comparison method.

Real-Time Correction of Movement Errors of Machine Axis by Twyman-Green Interferometry (광위상 간섭을 이용한 이송축의 운동오차 실시간 보상)

  • 이형석;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3115-3123
    • /
    • 1993
  • This paper presents a real-time correction method of the movemont errors of a translatory precision machine axis. This method is a null-balances technique in which two plane mirrors are used to generate an interferometric fringe pattern utilizing the optical principles of TwymanGreen interferometry. One mirror is fixed on a reference frame, while the other is placed on the machine axis being supported by three piezoelectric actuators. From the fringe pattern, one translatory and two rotational error components of the machine axis are simultaneously detected by using CCD camera vision and image processing techniques. These errors are then independently suppressed by activating the peizoelectric actuators by real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with movement errors less than 10 nm in vertical straightness, 0.1 arcsec in pitch, and 0.06 arcsec in roll for 50mm travel by adopting the real-time correction method.