• Title/Summary/Keyword: 인터넷 뉴스 댓글

Search Result 18, Processing Time 0.024 seconds

Mining Reputation of People Using Reply of News Article (뉴스 댓글을 통한 인물 인지도 추출)

  • Ryu, Joonsuk;Kim, Won young;Kim, Ung mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.870-873
    • /
    • 2010
  • 인터넷의 보편화와 사용자 증가는 사회에 많은 변화를 가지고 왔다. 많은 변화 중 인터넷을 통한 뉴스 제공은 종이 신문과는 다르게 인터넷 사용이 가능한 모든 사람들에게 뉴스를 제공 받을 수 있게 되었으며 언제든 원하는 기사를 다시 제공 받을 수 있게 해주었다. 이러한 이유로 인터넷 뉴스는 다양한 연령대의 사용자들이 뉴스를 접할 수 있게 되었고 인터넷 뉴스를 읽은 많은 사용자중 해당 뉴스에 댓글을 남기게 되었다. 이러한 댓글은 사용자의 의견을 내포하고 있는 것으로 본 논문에서는 사용자들이 남긴 댓글에 오피니언 마이닝을 적용하여 사용자 의견을 추출하여 특정 인물에 대한 인지도를 찾아내는 기법을 제시한다.

Political Information Filtering on Online News Comment (정보 중립성 확보를 위한 인터넷 뉴스 댓글의 정치성향 분석)

  • Choi, Hyebong;Kim, Jaehong;Lee, Jihyun;Lee, Mingu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.575-582
    • /
    • 2020
  • We proposes a method to estimate political preference of users who write comments on internet news. We collected and analyzed a massive amount of new comment data from internet news to extract features that effectively characterizes political preference of users. We expect that it helps user to obtain unbiased information from internet news and online discussion by providing estimated political stance of news comment writer. Through comprehensive tests we prove the effectiveness of two proposed methods, lexicon-based algorithm and similarity-based algorithm.

The Comparison Between the Comments and the Replies on Korean President Election News: using Topic Modeling (대선 관련 인터넷 뉴스의 댓글과 대댓글 간 비교를 통해 살펴본 온라인 토론의 진행 가능성)

  • Lee, Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.33-55
    • /
    • 2022
  • This study analyzed the comments and the replies on internet news related to the presidential election in order to verify whether online discussions are properly conducted. According to Habermas' public sphere theory, discussions is an effort among participants to reach a social consensus through the deliberations that are based on open communications. We propose that if such discussions properly take place through the act of writing in the Internet space, the comments and the replies will show a certain difference in terms of the structure and the content. To validate, this study analyzed more than 40,000 comments collected from Daum News portal site in Korea. The topic of the related news was the presidential election, because it is a topic of which people are highly interested in and that comments are actively running. The result of the t-test and topic modeling result show that all the hypotheses were supported thus we conclude that online discussions properly took places. This study also showed that online comments are not chaotic remarks that relieve people's stresses, but rather an outcome of the deliberation processes moving towards a social consensus.

TRIB: A Clustering and Visualization System for Responding comments on WebBlog (TRIB: 웹블로그 댓글분류 시각화 시스템)

  • Bae, Min-Jung;Lee, Yun-Jung;Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.226-229
    • /
    • 2009
  • 최근 들어 인터넷 게시판이나 개인 블로그 등은 온라인상에서 사람들의 정보 공유나 의견 교환의 중요한 매체가 되고 있다. 많은 수의 블로그들은 현재 사회적으로 이슈가 되는 여러 문제들을 반영하고 있다. 또한 최근 댓글을 통해 적극적으로 자신의 의사 표현하거나 다른 사람들의 의견을 살피는 인터넷 사용자의 증가로 인터넷 뉴스나 블로그 기사에 많은 수의 댓글이 달리고 있다. 그러나 대부분의 블로그나 인터넷 포털 사이트의 경우 기사나 댓글들을 순차적인 목록 형태로 제공하므로 자신이 원하는 내용의 댓글을 검색하거나 전체 댓글에 대한 전반적인 파악은 힘든 일이다. 따라서 본 논문에서는 기사에 달린 많은 수의 댓글들을 분류하고, 이를 시각화 하는 시스템인 TRIB(Telescope for Responding comments for Internet Blog)을 제안한다. TRIB은 미리 정의된 사용자 정의 사전을 이용하여 댓글을 내용에 따라 분류하여 시각화 하므로 사용자들은 자신의 관심과 흥미에 따라 개인화 된 뷰를 볼 수 있다. 1,000개 이상의 댓글을 가진 뉴스 기사들을 대상으로 한 실험을 통해 TRIB 시스템의 댓글 분류와 시각화 성능을 보인다.

The Characteristics of Malicious Comments: Comparisons of the Internet News Comments in Korean and English (악성 댓글의 특성: 한국어와 영어의 인터넷 뉴스 댓글 비교)

  • Kim, Young-il;Kim, Youngjun;Kim, Youngjin;Kim, Kyungil
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.548-558
    • /
    • 2019
  • Along generalization of internet news comments, malicious comments have been spread and made many social problems. Because writings reflect human mental state or trait, analyzing malicious comments, human mental states could be inferred when they write internet news comments. In this study, we analyzed malicious comments of English and Korean speaker using LIWC and KLIWC. As a result, in both English and Korean, malicious comments are commonly more used in sentence, word phrase, morpheme, word phrase per sentence, morpheme per sentence, positive emotion words, and cognitive process words than normal comments, and less used in the third person singular, adjective, anger words, and emotional process words than normal comments. This means people are state that they can not control their feeling such as anger and can not think well when they write news comments. Therefore, when internet comments were written, service provider should consider the way that commenters monitor own writings by themselves and that they prevent the other users from getting close to comments included many negative-emotion words. In other sides, it is discovered that English and Korean malicious comments was discriminated by authenticity. In order to be more objective, gathering data from various point of time is needed.

TRIB : A Clustering and Visualization System for Responding Comments on Blogs (TRIB: 블로그 댓글 분류 및 시각화 시스템)

  • Lee, Yun-Jung;Ji, Jung-Hoon;Woo, Gyun;Cho, Hwan-Gue
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.817-824
    • /
    • 2009
  • In recent years, Weblog has become the most typical social media for citizens to share their opinions. And, many Weblogs reflect several social issues. There are many internet users who actively express their opinions for internet news or Weblog articles through the replying comments on online community. Hence, we can easily find internet blogs including more than 10 thousand replying comments. It is hard to search and explore useful messages on weblogs since most of weblog systems show articles and their comments to the form of sequential list. In this paper, we propose a visualizing and clustering system called TRIB (Telescope for Responding comments for Internet Blog) for a large set of responding comments for a Weblog article. TRIB clusters and visualizes the replying comments considering their contents using pre-defined user dictionary. Also, TRIB provides various personalized views considering the interests of users. To show the usefulness of TRIB, we conducted some experiments, concerning the clustering and visualizing capabilities of TRIB, with articles that have more than 1,000 comments.

Analysis and Visualization for Comment Messages of Internet Posts (인터넷 게시물의 댓글 분석 및 시각화)

  • Lee, Yun-Jung;Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.45-56
    • /
    • 2009
  • There are many internet users who collect the public opinions and express their opinions for internet news or blog articles through the replying comment on online community. But, it is hard to search and explore useful messages on web blogs since most of web blog systems show articles and their comments to the form of sequential list. Also, spam and malicious comments have become social problems as the internet users increase. In this paper, we propose a clustering and visualizing system for responding comments on large-scale weblogs, namely 'Daum AGORA,' using similarity analysis. Our system shows the comment clustering result as a simple screen view. Our system also detects spam comments using Needleman-Wunsch algorithm that is a well-known algorithm in bioinformatics.

A Study of the Relationship between Perception and Activities in the News Replies -Focused on News Perception and Credibilities- (온라인 댓글 인식과 댓글 활동의 관계에 관한 연구 -댓글의 신뢰도와 인터넷뉴스 수용자의 수용경향 중심으로-)

  • Kweon, Sang-Hee;Kim, Ik-Hyun
    • Korean journal of communication and information
    • /
    • v.42
    • /
    • pp.44-78
    • /
    • 2008
  • The present study explored the agenda setting effects of replies called "Daet-Gul", and perception of the news replies. This study has established three research questions: 1) the recognition of the online communication 2) the degree of the reading and writing on online spare 3) the amount of the effects on the online communication. This study is performed using survey method. The survey results indicated in that the participants are very passive readers and writers on the online spare. In addition, the survey repliers evaluated that replies' mechanical device and antigravitational speed have high score, whereas they marked low store in the content and credibility of 'the replies. Therefore, they did not estimate the effects of the replies highly. All the results indicate that 'the replies' is not the fundamental factors of the deliberative democracy. It's because online communication with 'the replies' are thought to be fated the abuse and slander. Therefore, it's essential to improve the online communication with 'the replies', through the introduction of the 'trackback', which is a sort of the 'remote replies'

  • PDF

Comment Classification System using Deep Learning Classification Algorithm based on Crowdsourcing (크라우드소싱 기반의 딥러닝 분류 알고리즘을 이용한 댓글 분류 시스템)

  • Park, Heeji;Ha, Jimin;Park, Hyaelim;Kang, Jungho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.864-867
    • /
    • 2021
  • 뉴스, SNS 등의 인터넷 댓글은 익명으로 의견을 자유롭게 개진할 수 있는 반면 댓글의 익명성을 악용하여 비방이나 험담을 하는 악성 댓글이 여러 분야에서 사회적 문제가 되고 있다. 해당 문제를 해결하기 위해 AI를 활용한 댓글 분류 알고리즘을 개발하려는 많은 노력들이 이루어지고 있지만, 댓글 분류 모델에 사용되는 AI는 오버피팅의 문제로 인해 댓글 분류에 대한 정확도가 떨어지는 문제점을 가지고 있다. 이에 본 연구에서는 크라우드소싱을 활용하여 오버피팅으로 인한 악성 댓글 분류 및 판단 정확도 저하 문제를 개선한 크라우드소싱 기반 딥러닝 분류 알고리즘(Deep Learning Classification Algorithm Based on Crowdsourcing: DCAC)과 해당 알고리즘을 사용한 시스템을 제안한다. 또한, 실험을 통해 오버피팅으로 낮아진 판단 정확도를 증가시키는 데 제안된 방법이 도움이 되는 것을 확인하였다.

Bias & Hate Speech Detection Using Deep Learning: Multi-channel CNN Modeling with Attention (딥러닝 기술을 활용한 차별 및 혐오 표현 탐지 : 어텐션 기반 다중 채널 CNN 모델링)

  • Lee, Wonseok;Lee, Hyunsang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1595-1603
    • /
    • 2020
  • Online defamation incidents such as Internet news comments on portal sites, SNS, and community sites are increasing in recent years. Bias and hate expressions threaten online service users in various forms, such as invasion of privacy and personal attacks, and defamation issues. In the past few years, academia and industry have been approaching in various ways to solve this problem The purpose of this study is to build a dataset and experiment with deep learning classification modeling for detecting various bias expressions as well as hate expressions. The dataset was annotated 7 labels that 10 personnel cross-checked. In this study, each of the 7 classes in a dataset of about 137,111 Korean internet news comments is binary classified and analyzed through deep learning techniques. The Proposed technique used in this study is multi-channel CNN model with attention. As a result of the experiment, the weighted average f1 score was 70.32% of performance.