• Title/Summary/Keyword: 인체보행하중

Search Result 4, Processing Time 0.023 seconds

A Study of Load Modeling Method for Vibration Estimation of Bridge Structures (교량구조물의 진동영향평가를 위한 동하중 이상화모델링 기법 연구)

  • Park, Yeon-Soo;Hong, Hye-Jin;Kong, Kang-Joo;Kim, Jung-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.2 s.21
    • /
    • pp.9-15
    • /
    • 2006
  • Structures of Civil Engineering have been designed with a safety as their main purpose. However recently, the greenness side of the technology of civil engineering regarded as most Important and also utility values and stability of the structures. Also developments in the technology make materials to be higher strength and they shortened scales and stiffness of the structural members. This means that it brings an immoderate deflection and vibration of bridge structures simultaneously. Accordingly, this study ai ed to find and estimate the most idealized structure models on the effects of the deflection and vibration of bridges from the traffic lane load and human vibration - the main pass of bridge structures.

다양한 중량물 운반(carrying) 유형에서의 최대허용 하중에 대한 비교평가

  • 이관석;박희석;서치원
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.813-821
    • /
    • 1995
  • 본 연구의 목적은 심리육체적 방법(Psychophysical method)을 이용하여 다양한 중량물운반 유형에서의 최대허용하중을 구하는 것이며 이의 타당성을 생리학적 방법(physiological method)을 이용하여 검토하는 것이다. 또한, 인체측정과 근력측정 자료를 이용하여 각 운반유형에서의 최대허용 하중을 예측하는 모형을 개발하고자 한다. 본 연구에서는 네 가지의 운반유형(Front carrying, One-hand side carrying, Two-hands side carrying 그리고 Back carrying)과 두가지의 보행 속도 (50.0 그리고 79.2 m/min)를 주요변수로 8가지의 작업에 대해 무작위로 선택하여 각 작업에 대한 최대허용 하중을 시간과 경비의 감소측면에서 폭넓게 사용되고 있는 심리육체적 방법으로 구하였다. 피실험자는 운반작업의 경력이 있는 실제 작업자군(n=7)과 그렇지 않은 학생군(n=10)으로 구분하여 건강한 남성 피실험자를 대상으로 연구를 실시하였다. 주실험전에 인체측정과 근력측정을 실시하였다. 이후에 심리육체적 방법과 생리학적 방법을 실시간(on-line)으로 실시하였다. 연구결과로 학생군과 작업자군간의 신체조건은 뚜렷한 차이를 보이지 않았으나 근력은 작업자가 우월하였다. 심리육체적 방법을 사용하여 도출된 최대허용 하중은 학생군, 작업자군 모두 운반유형의 변화에 따라 유의함을 보였다.(학생군:p=.0001 작업자군:p=.0001). 반면에 속도의 변화는 유의하지 않았다(학생군:p=.7954 작업자군:p=.9231). 또한 학생군과 작업자군 모두 Back carrying에서 가증 큰 하중을 운반하였다(학생군:8.16kg 작업자군:12.9kg). 심박수를 이용한 생리학적 연구에서는 평균 심박수가 거의 100 이하를 유지하므로써 피실험자들이 8시간 작업기준으로 보아 무리가 없는 최대허용 하중을 결정하였음을 보였다. 또한 각 운반작업에 대한 최대허용 하중을 예측하는 회귀모형을 제시하였다.

  • PDF

Development of advanced technology shoes combined conical top foundation mechanism (팽이기초 메카니즘을 융합한 신개념 신발 개발 연구)

  • Kim, Yeon-Deok;Lee, Ji-Hyun;Kim, Sang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.724-731
    • /
    • 2016
  • This paper presents the interdisciplinary study of a combined mechanism on the interactions between ground and foot using bioengineering and geotechnical engineering. A new mechanism of advanced technology shoes, which can be made safe with a comfortable gait on both soft and hard ground, were developed combining the mechanism of conical top foundation. The experimental tests were carried out to verify the developed shoes. The prototype shoes and test grounds were designed and produced to perform the tests. The general existing shoes and advanced technology shoes were used to measure the pressures re-acting the sole during the tests by a special measurement system. The results clearly showed that the pressures acting on the sole of advanced technology shoes were distributed uniformly compared with that of the existing shoes, and were in good agreement with theoretical approach of the new mechanism. Therefore, the advanced technology shoes could allow a safe gait ergonomically by a new mechanism on any ground type. The load transfer could occur by the interaction between ground and shoes. In addition, these results are expected to be useful for the development of an interdisciplinary study of a new mechanism in the future.

Joint moments and muscle forces during walking with sided load as one of activities of daily living (편향하중 조건 보행시 인체의 적응 작용에 대한 분석)

  • Kim, Hyun-Dong;Son, Jong-Sang;Kim, Han-Sung;Kim, Young-Ho;Lim, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1709-1712
    • /
    • 2008
  • The trunk is inclined to the loaded side when carrying an object as one of activities of daily living. As the reaction to this behavior the human body may be inclined to his/her trunk to unloaded side. The present study investigated the biomechanical effects of weight variation for sided load carriage during walking upon joint moments and muscle torques, through the tracker agent and joint driving dynamic analysis. To perform the experiment one male was selected as subject for the study. Gait analysis was performed by using a 3D motion analysis system. Thirty nine 14mm reflective markers, according to the plug-in marker set, were attached to the subject. We used BRG.LifeMOD(Biomechanics Research Group, Inc., USA), for skeletal modeling and inverse and joint driving dynamic simulation during one gait cycle. In walking with a sided load carriage, the subject modeled held the carriage with the right hand, which weighed 0, 5, 10, 15kg, 20kg respectively. The result of this simulation showed that knee and hip in the coronal plane were inclined to the loaded side and loaded side had larger moments as the sided load carriage was increased. On the other hand thoracic and lumbar in the coronal plane had larger negative values as the sided loaded carriage was increased. The thoracic and lumbar in the transverse plane also had larger values as the sided load was increased. And the several muscles of loaded side were increased as increasing sided load. It could be concluded that human body is adopted to side loaded circumstances by showing more biologic force. These results could be very useful in analysis for delivery motion of daily life.

  • PDF