• Title/Summary/Keyword: 인정보

Search Result 1,105, Processing Time 0.026 seconds

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea IV. Genesis and Distribution of the Soil Clay Minerals (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) IV. 토양점토광물(土壤粘土鑛物)의 분포(分布) 및 생성(生成))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.202-212
    • /
    • 1992
  • This study reports on the genesis and mineralogical characteristics of the clay minerals in the soils derived from the five major parent rocks of granite, granite-gneiss, limestone, shale, and basalt in Korea. The investigation on the mineralogical aspects of primary and secondary minerals of the rocks and coarse fractions in the soils have been already reported. In this report, the identification of clay minerals in the soil clay fractions was done through the analyses of chemical, X-ray diffraction, and thermal methods. The studies showed clearly that much of the clay minerals was evolved by the weathering of primary minerals and some were further developed by the transformation of secondary minerals. Cation exchange capacity(CEC) of the clay fractions increased with higher amotunts of vermiculite, chlorite, and illite, however, decreased with higher hydroxy octahedral sheet within the interlayer spaces of vermiculite even if dominant clay with vermiculite. Feldspars in the granite and granite-gneiss might be completely transformed to kaolin mineral, Illite, chlolrite, and vermiculite formed by the alteration of micas, amphibole, augite, and primary chlorile seem to be subsequently transformed to the mixed layer minerals such as illite/vermiculite, illite/chlorite, and chlorite/vermiculite. These weathering products may be ultimately transformed into kaolin minerals. The smectite minerals in the clay fractions of the soils developed on the limestone are considerably present and they seem to be formed directly by the precipitation from high Mg solution and/or by the transformation of vermiculite from micas and chlorite in the parent materials. Abundant presence of illite in the soil clays developed on the shale is considered to have inherited from the fine particles and more resistant hydrous muscovite. The weathering sequences of the hydrous muscovite were as follows according to the degree of soil development ; hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer(Inceptisols, Daegu series) and hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin mineral(Alfisols, Buyeo series). The plagioclase in the basalt might be mostly weathered to kaolin minerais. The augite in the basalt is likely to be transformed through progressive stage of weathering, augite ${\rightarrow}$ chlorite ${\rightarrow}$ chlorote/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin. Another weathering sequence of augite could be expected, augite ${\rightarrow}$ chlorite ${\rightarrow}$ illite by the presence of illite and illite/vermiculite mixed layer in the clay fractions. Vermiculite and gibbsite were quantified from thermogravimetry(TG) and kaolin minerals, from both TG and differerential thermal analysis (DTA). Vermiculite in Jangseong series from the limestone was the dominant clay mineral of 21.7 percent and had a range in the order of 9.2 percent in Buyeo series to 5.4 percent in Daegu series from the shale. The rest soils ranged from 8.8 to 28.3 percent. Kaolin minerals were the dominant clay mineral of 32.7 percent in Asan series from the granite-gneiss and Gueom series of 32.0 percent from the basalt. The soils from the limestone ranged from 9.4 to 14.9 percent. The rest soils ranged from 8.9 to 28.6 percent. Gibbsite were 3.9 and 2.3 percent for Weoljeong and Chahang series from the granite, respectively. In Asan and Cheongsan series from the giranite-gneiss were 1.4 and 4.5 percent, respectively, and 3.6 percent in Jangpa series from the basalt.

  • PDF

The Standing Crops and Soil-borne Microfungal Flora of Phyllostachys reticulata in Korea (한국산(韓國産) 왕대나무의 현존량(現存量)과 토양(土壤) 미세균류상(微細菌類相))

  • Kim, Kwan-Soo
    • The Korean Journal of Mycology
    • /
    • v.7 no.2
    • /
    • pp.91-116
    • /
    • 1979
  • This paper is to investigate the standing crops and microfungal flora in soil in Phyllostachys reticulata forests in both the Yesan area (A) and the Kwangsan area (B). The stand density of the bamboo revealed 17,250 shoots per ha in area A, and in area B 14,780 shoots which were 16.1% less in number than area A. In respect to the environmental factors between the two areas, the mean temperature during the growth period was $1.5{\sim}2^{\circ}C$ higher in area B than in area A, soil tempeature also was $1{\sim}2^{\circ}C$ higher in area B, and the total quantities of nitrogen, phosphoric acid and organic compounds contained in the soil of area B were also slightly higher than those of area A. In area B the quantities of dried leaf matter, humus, and vegetation in the bamboo forest were also larger than in area A. In addition, five more species of microfungi which playa role in the decomposition of the various organic materials in the bamboo forests were identified in area B: Mortierella elongata, Mucor circinelloides, Aspergillus japonicus, Penicillium waksmani and Trichoderma lignorum. The atmospheric temperature in the inner portions of the bamboo forests was lower than the outside temperature, but the humidity was higher. The rates of relative illuminance were measured in area A at 4.19%, and in area B at 2.7%. These values revealed that the photosynthetic acitivity in the lower part of the bamboo was lost but it was considered that lower illuminance increased the microfungal activities in the vicinity of the surface soil. Since the productive structure of the bamboo showed that the maximum amount of photosynthesis was located in the upper portion of the bamboo in area B, it was considered to be an effective structure in maintaining the high productivity of the bamboo. The allometric relation between $D^2H$ and dry weight of stems(Ws), branches(Wb) and leaves(Wl) of the bamboo in area A were appoximated by log Ws=0.5262 log $D^2H$+1.9546; log Wb=0.6288 log $D^2H$+1.5723; log Wl=0.5181 log $D^2H$+1.8732, and those of the bamboo in area B were approximated by log Ws=0.5433 log $D^2H$+1.8610; log Wb=0.1630 log $D^2H$+2.3475; log Wl=0.4509 log $D^2H$+2.0041. From the above, the standing crops in area A were measured thus: Ws was 1,128. 83kg; Wb, 689.05kg; Wl, 926.69kg and Wl, 2,744.57kg per 10a. In area B, Ws was 1,206. 66kg; Wb, 679.92kg; Wl, 1,112.51kg and Wt, 2.999kg per l0a. Significant differences from the result of t-test were for $D^2H$ Ws, Wl and Wt between areas A and B. But no significant difference was found for Wb. In order to record as completely as possible the microfungal flora of the areas, every possible means was tried, and 158 strains of fungi were isolated, and of these, the microfungi of 55 species were identified. The dominant species were Trichoderma viride, Penicillium janthinellum, P. commune, Aspergillus oryzae, A. niger, A. gigantus, A. fumigatus, Mortierella ramaniana, var. anguliFPora, Mucor hiemalis and Zygorhynchus moelleri. According to the above results, it was revealed that optimum soil, the increases of soil materials, more species of soil microfungi, and the atmospheric temperature during the growth period have made the bamboo flourish and bring more species and larger quantities of vegetation in the bamboo forests. The correlation between the standing crops and environmental factors in the bamboo forest is considered to be a complicated relationship of all the factors, but the stand density is thought to be the most important factor involved.

  • PDF

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF

Studies on the morphological variation of plant organs of elongating node-part in rice plant (수도 신장 절위 경엽의 형태변이에 관한 연구)

  • 김만수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.1-35
    • /
    • 1969
  • Attempts were made to obtain the fundamental knowledge on the quantitative constitution status of leaves and stem of elongating node-part, and the relationships between these morphological characteristics along with the nitrogen contents of leaves and grain yield were examined varing application amounts of nitrogen in rice plant. I. The agronomic characteristics of leaves and nodes of elongation node-part (4-node parts from the top of stem) were observed at heading stage with 20 leading rice varieties of Kang Won district. The results are summarized as follows: 1. Leaf area magnitude of the flag and the fourth leaf was smaller than that of the second and the third with the average value of flag leaf 18.61 $cm^2$, the second leaf 21.84 $cm^2$, the third 21.52 $cm^2$ and the fourth 18.56 $cm^2$. The weight of leaf blade showed an isotonic tendency with the magnitude of leaf area with the value of the flag leaf 97.0 mg, the second leaf 117.1 mg, the third 115.4 mg, and the fourth 95.3 mg. The weight of each leaf sheath was remarkably larger at the higher node-part than at the lower node-part of the stem with the value of flag leaf sheath 176.3 mg, the second 163.7 mg, the third 163.4 mg and the fourth 123.9 mg. Accordingly, the total leaf weight of each part was larger at the second and the third leaf than at the first and the fourth. Total plant weight of each part (weight of leaf blade, leaf sheath, and culm) also was larger at the middle node-part. 2. Coefficients of variation for the varietal differences of the morphological characteristics of elongating node-part were 12.75% for the leaf area, 15.29% for the weight of leaf blade, 15.90%, for the weight of leaf sheath, 11.42% for the weight of internode, 15.45% for the leaf weight (leaf blade & leaf sheath) and 13.24% for the straw weight. And these coefficient values of the most characteristics were, on the whole, smaller at the second and the third node-part than at the first and the fourth node-part, but the coefficient value of the internode weight was rather small at the third and fourth node-part. 3. Constitutional ratio of each plant organ to the total plant weight in term of dry matter weight (excluding head and root wight) was 39.2% for the leaf sheath, 34.2% for the culm, 26.6% for the leaf blade. And ocnstitutional ratio of leaf sheath in term of dry matter weight was larger at the higher position in contrast with that of culm. 4. Average weight ration of leaf blade to culm, leaf sheath to culm, leaf blades to sheath and the leaf blades to culm plus leaf sheath were 77.7 %, 114.5%, 67.9% and 36.2%, respectively. With regard to the position of the plant organ, the weight ratio of leaf blade to culm and that of leaf sheath to culm were larger at higher part in contrast with that of leaf blade to leaf sheath. 5. Generally, there founded deep relationships between grain yield and each morphological characteristics of plant organ of elongating node-part as follows; Correlation coefficient between total area of 4 leaves (from flag to the fourth leaf) and grain yield was ${\gamma}$=0.666$^{**}$ In regard to the position of leaves, correlation coefficient values of flag, the second, the third and the fourth leaf were ${\gamma}$=0.659$^{**}$, ${\gamma}$=0.609$^{**}$, ${\gamma}$=0.464$^{*}$ and ${\gamma}$=0.523$^{*}$, respectively. Correlation coefficient between total weight of leaf blades and the grain yield was ${\gamma}$=0.678$^{**}$. In regard to the position of leaves, that of flag leaf was ${\gamma}$=0.691$^{**}$, and ${\gamma}$=0.654$^{**}$ for the second leaf, ${\gamma}$=0.570$^{**}$ for the third, and ${\gamma}$=0.544$^{**}$ for the fourth. Correlation between the weight of leaves (blade weight plus sheath weight) and the grain yield showed similar values. In the relationship between plant weight and grain yield there also was significant correlation, but with highly significant value only for the first node-part. There appeared correlation between total weight of leaf sheath and grain yield with the value of ${\gamma}$=0.572$^{**}$ and in regard to the position of each leaf sheath the values were ${\gamma}$=0.623$^{**}$ for the flag leaf, ${\gamma}$=0.486$^{**}$ for the second leaf, ${\gamma}$=0.513$^{**}$ for the third, ${\gamma}$=0.450$^{**}$ for the fourth. However, there was no significant correlation between culm weight and grain yield. 6. With respect to in gain yield, varietal differences in magnitude of leaf area, weight of leaf blade, leaf weight per unit area, weight of leaf sheath, culm weight, total leaf and stem weight were larger in the case of high yielding varieties and decreased in accordance with decreasing yield. And this tendency also was shown in the varietal differences of magnitude of each part. Variation in magnitude of each part for the leaf area, weight of leaf blade, culm weight was significantly small in high yielding varieties compared to low yielding varieties. 7. Plant constitutional ratio of each organ of the elongating node-part in term of weight magnitnde varied to som extent according to varieties indicating leaf blade 27.6%, leaf sheath 39.5%, culm 32.9% in the case of high yielding varieties, leaf blade 25.5%, leaf sheath 38.1%, culm 36.4% in the case of low yielding varieties, and medium yielding varieties showed intermadiate values. 8. Far higher values of the weight ration of leaf blade to culm and leaf sheath to culm were given to the high yielding varieties compared to low yielding varieties. And medium yielding varieties showed intermadiate values. II. Effects of application rate of nitrogen on the morphological characteristics of the elongating node-part, nitrogen content of leaf blade, and their relation with the grain yield of the rice were observed with 3 rice varieties; Shin No.2, Shirogane, and Jinheung varying application amounts of nitrogen as 8kg, 12kg and 16kg per 10 are. 1. As for the variation of morphological magnitude s affected by the amounts of nitrogen application, total leaf area (4 leaves from the flag leaf) increased to 16.5% at 12kg N plot, and about 30% at 16kg N polt compared to 8kg N plot and total weight of leaf blade also increased to similar extent, respectively, in contrast with weight of leaf sheath increasing 4.9% and 7.8%, respectively. However, the weight of culm decreased to 1.5% and 11.2%at the 12kg N plot and 16kg N plot, respectively, and these decreasing rate was noted at the nodes of lower part. 2. As for the verietal differences in variation of morphological magnitude as affected by the amount of nitrogen fertilization, leaf area coefficient value of variation of the total leaf area was 15.40% for Shin No. 2, 12.87% for Shirogane, and 10.99% for Jinheung. With respect to the position of nodes, the largest variation of leaf blade magnitude was observed at the fourth for Shin No. 2, the second for Shirogan, and flag leaf for Jinheung. And there also was an isotonic varietal difference in the weight of leaf blade. Variation in total culm weight showed varietal differences with the coefficient value of 7.72% for Shin No.2, 12.11% for Shirogane, and 0.94% for Jinheung. There also was varietal differences in the variation according to the position of nodes. 3. Variation of each elongating node-part related to the fertilization amount decreased with the increase of fertilization amount in the items of leaf area, weight of leaf sheath, culm weight, but weight of leaf sheath varied more at heavier fertilization than at others. 4. Constitutional ratio of each organ excluding head also varied with fertilization amount; constitutional ratio of leaf blade increased much with the increasing amount of fertilization in contrast with the response of culm eight. However, constitutional ration of the weight of leaf sheath was not much affected. 5. Lower value of the ration of leaf blade to culm was given to the 8kg N per 10 are plot, and the ratio of leaf blade to leaf sheath decreased with the increasing amount of fertilization in contrast with the increase in the ratio of leaf sheath to culm. however, the ration of leaf blade to culm plus leaf sheath decreased. 6. With the increase of nitrogen fertilization, leaf area, weight of leaf blade and leaf sheath increased. Accordingly, grin yield also increased to some extent. It was noted that culm weight was changed inversely to the changes in grain yield, but the degree of this variation varied with varietal characteristics. 7. Nitrogen content of leaves at heading and fruiting stage varied with the fertilization amount, and average nitrogen content of leaves of the varieties used 2.19%, 2.49% and 2.74% at the plot of 8kg N, and 12kg N and 16kg N per 10 are, respectively, at heading time, and 0.80%, 0.92% and 1.03% at each plot at fruiting stage. Thus, nitrogen content of leaves increased much with the increasing amount of fertilization, and higher value was given to the leaves on the higher position of elongating node-part. 8. There also was variation of nitrogen content of leaves in accordance with the varieties. However higher grain yield was obtained from the plants retaining higher nitrogen content in leaves at heading or fruiting stage.

  • PDF

Showing Filial Piety: Ancestral Burial Ground on the Inwangsan Mountain at the National Museum of Korea (과시된 효심: 국립중앙박물관 소장 <인왕선영도(仁旺先塋圖)> 연구)

  • Lee, Jaeho
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.96
    • /
    • pp.123-154
    • /
    • 2019
  • Ancestral Burial Ground on the Inwangsan Mountain is a ten-panel folding screen with images and postscripts. Commissioned by Bak Gyeong-bin (dates unknown), this screen was painted by Jo Jung-muk (1820-after 1894) in 1868. The postscripts were written by Hong Seon-ju (dates unknown). The National Museum of Korea restored this painting, which had been housed in the museum on separate sheets, to its original folding screen format. The museum also opened the screen to the public for the first time at the special exhibition Through the Eyes of Joseon Painters: Real Scenery Landscapes of Korea held from July 23 to September 22, 2019. Ancestral Burial Ground on the Inwangsan Mountain depicts real scenery on the western slopes of Inwangsan Mountain spanning present-day Hongje-dong and Hongeun-dong in Seodaemun-gu, Seoul. In the distance, the Bukhansan Mountain ridges are illustrated. The painting also bears place names, including Inwangsan Mountain, Chumohyeon Hill, Hongjewon Inn, Samgaksan Mountain, Daenammun Gate, and Mireukdang Hall. The names and depictions of these places show similarities to those found on late Joseon maps. Jo Jung-muk is thought to have studied the geographical information marked on maps so as to illustrate a broad landscape in this painting. Field trips to the real scenery depicted in the painting have revealed that Jo exaggerated or omitted natural features and blended and arranged them into a row for the purposes of the horizontal picture plane. Jo Jung-muk was a painter proficient at drawing conventional landscapes in the style of the Southern School of Chinese painting. Details in Ancestral Burial Ground on the Inwangsan Mountain reflect the painting style of the School of Four Wangs. Jo also applied a more decorative style to some areas. The nineteenth-century court painters of the Dohwaseo(Royal Bureau of Painting), including Jo, employed such decorative painting styles by drawing houses based on painting manuals, applying dots formed like sprinkled black pepper to depict mounds of earth and illustrating flowers by dotted thick pigment. Moreover, Ancestral Burial Ground on the Inwangsan Mountain shows the individualistic style of Jeong Seon(1676~1759) in the rocks drawn with sweeping brushstrokes in dark ink, the massiveness of the mountain terrain, and the pine trees simply depicted using horizontal brushstrokes. Jo Jung-muk is presumed to have borrowed the authority and styles of Jeong Seon, who was well-known for his real scenery landscapes of Inwangsan Mountain. Nonetheless, the painting lacks an spontaneous sense of space and fails in conveying an impression of actual sites. Additionally, the excessively grand screen does not allow Jo Jung-muk to fully express his own style. In Ancestral Burial Ground on the Inwangsan Mountain, the texts of the postscripts nicely correspond to the images depicted. Their contents can be divided into six parts: (1) the occupant of the tomb and the reason for its relocation; (2) the location and geomancy of the tomb; (3) memorial services held at the tomb and mysterious responses received during the memorial services; (4) cooperation among villagers to manage the tomb; (5) the filial piety of Bak Gyeong-bin, who commissioned the painting and guarded the tomb; and (6) significance of the postscripts. The second part in particular is faithfully depicted in the painting since it can easily be visualized. According to the fifth part revealing the motive for the production of the painting, the commissioner Bak Gyeongbin was satisfied with the painting, stating that "it appears impeccable and is just as if the tomb were newly built." The composition of the natural features in a row as if explaining each one lacks painterly beauty, but it does succeed in providing information on the geomantic topography of the gravesite. A fair number of the existing depictions of gravesites are woodblock prints of family gravesites produced after the eighteenth century. Most of these are included in genealogical records and anthologies. According to sixteenth- and seventeenth-century historical records, hanging scrolls of family gravesites served as objects of worship. Bowing in front of these paintings was considered a substitute ritual when descendants could not physically be present to maintain their parents' or other ancestors' tombs. Han Hyo-won (1468-1534) and Jo Sil-gul (1591-1658) commissioned the production of family burial ground paintings and asked distinguished figures of the time to write a preface for the paintings, thus showing off their filial piety. Such examples are considered precedents for Ancestral Burial Ground on the Inwangsan Mountain. Hermitage of the Recluse Seokjeong in a private collection and Old Villa in Hwagae County at the National Museum of Korea are not paintings of family gravesites. However, they serve as references for seventeenth-century paintings depicting family gravesites in that they are hanging scrolls in the style of the paintings of literary gatherings and they illustrate geomancy. As an object of worship, Ancestral Burial Ground on the Inwangsan Mountain recalls a portrait. As indicated in the postscripts, the painting made Bak Gyeong-bin "feel like hearing his father's cough and seeing his attitudes and behaviors with my eyes." The fable of Xu Xiaosu, who gazed at the portrait of his father day and night, is reflected in this gravesite painting evoking a deceased parent. It is still unclear why Bak Gyeong-bin commissioned Ancestral Burial Ground on the Inwangsan Mountain to be produced as a real scenery landscape in the folding screen format rather than a hanging scroll or woodblock print, the conventional formats for a family gravesite paintings. In the nineteenth century, commoners came to produce numerous folding screens for use during the four rites of coming of age, marriage, burial, and ancestral rituals. However, they did not always use the screens in accordance with the nature of these rites. In the Ancestral Burial Ground on the Inwangsan Mountain, the real scenery landscape appears to have been emphasized more than the image of the gravesite in order to allow the screen to be applied during different rituals or for use to decorate space. The burial mound, which should be the essence of Ancestral Burial Ground on the Inwangsan Mountain, might have been obscured in order to hide its violation of the prohibition on the construction of tombs on the four mountains around the capital. At the western foot of Inwangsan Mountain, which was illustrated in this painting, the construction of tombs was forbidden. In 1832, a tomb discovered illegally built on the forbidden area was immediately dug up and the related people were severely punished. This indicates that the prohibition was effective until the mid-nineteenth century. The postscripts on the Ancestral Burial Ground on the Inwangsan Mountain document in detail Bak Gyeong-bin's efforts to obtain the land as a burial site. The help and connivance of villagers were necessary to use the burial site, probably because constructing tombs within the prohibited area was a burden on the family and villagers. Seokpajeong Pavilion by Yi Han-cheol (1808~1880), currently housed at the Los Angeles County Museum of Art, is another real scenery landscape in the format of a folding screen that is contemporaneous and comparable with Ancestral Burial Ground on the Inwangsan Mountain. In 1861 when Seokpajeong Pavilion was created, both Yi Han-cheol and Jo Jung-muk participated in the production of a portrait of King Cheoljong. Thus, it is highly probable that Jo Jung-muk may have observed the painting process of Yi's Seokpajeong Pavilion. A few years later, when Jo Jungmuk was commissioned to produce Ancestral Burial Ground on the Inwangsan Mountain, his experience with the impressive real scenery landscape of the Seokpajeong Pavilion screen could have been reflected in his work. The difference in the painting style between these two paintings is presumed to be a result of the tastes and purposes of the commissioners. Since Ancestral Burial Ground on the Inwangsan Mountain contains the multilayered structure of a real scenery landscape and family gravesite, it seems to have been perceived in myriad different ways depending on the viewer's level of knowledge, closeness to the commissioner, or viewing time. In the postscripts to the painting, the name and nickname of the tomb occupant as well as the place of his surname are not recorded. He is simply referred to as "Mister Bak." Biographical information about the commissioner Bak Gyeong-bin is also unavailable. However, given that his family did not enter government service, he is thought to have been a person of low standing who could not become a member of the ruling elite despite financial wherewithal. Moreover, it is hard to perceive Hong Seon-ju, who wrote the postscripts, as a member of the nobility. He might have been a low-level administrative official who belonged to the Gyeongajeon, as documented in the Seungjeongwon ilgi (Daily Records of Royal Secretariat of the Joseon Dynasty). Bak Gyeong-bin is presumed to have moved the tomb of his father to a propitious site and commissioned Ancestral Burial Ground on the Inwangsan Mountain to stress his filial piety, a conservative value, out of his desire to enter the upper class. However, Ancestral Burial Ground on the Inwangsan Mountain failed to live up to its original purpose and ended up as a contradictory image due to its multiple applications and the concern over the exposure of the violation of the prohibition on the construction of tombs on the prohibited area. Forty-seven years after its production, this screen became a part of the collection at the Royal Yi Household Museum with each panel being separated. This suggests that Bak Gyeong-bin's dream of bringing fortune and raising his family's social status by selecting a propitious gravesite did not come true.