• Title/Summary/Keyword: 인장 부착 강도

Search Result 245, Processing Time 0.028 seconds

Bond Strength Properties of Latex Modified Concrete (라텍스 개질 콘크리트의 부착강도 특성)

  • 윤경구;이주형;최상릉;김기헌
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.507-515
    • /
    • 2001
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex. This study focuses on the investigation of bond strength of latex modified concrete. Pull-out bond test and uniaxial direct tensile bond test are adopted for evaluating the adhesion characteristics of latex modified concrete to conventional concrete substrate. The main experimental variables are test methods, latex-cement ratio, surface preparations and moisture levels. The results are as follows; The increase of latex-cement ratio substantially improves the adhesion between latex modified concrete and substrate. The effects of surface preparation at substrate into the bonding of latex modified concrete are quite different according to the conditions of surfaces. Thus, an adequate surface preparations are essential for good bond strength. Because the moisture level of the substrate may be critical to achieving bond, optimum moisture condition for a conventional concrete has evaluated in this study. The saturated condition of surface is the most appropriate moisture level among the considered, followed by dry condition and wet condition.

Comparative Study on the Bond Strength between Direct Tensile Test and Indirect Tensile Test for Bonded Concrete Overlay (직접인장 및 간접인장 실험방법에 따른 접착식 콘크리트 덧씌우기의 부착강도 비교 고찰)

  • Kim, Young Kyu;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1153-1163
    • /
    • 2013
  • Bonded concrete overlay is a favorable maintenance method since the material properties are similar to existing concrete pavements. In addition, bonded concrete overlay has advantage of structural performance based on being bonded together, both for the overlay layer and the existing pavement which perform as one monolithic layer. Therefore, it is important to have a suitable bond strength criteria for long term performance of bonded concrete overlay. This study aimed to investigate the affecting of bond strength on various bond characteristics, and to compare the bond strength between direct tensile test and indirect tensile test due to various conditions such as overlay materials, compressive and flexure strength of existing pavement, and deterioration status of existing pavement. As a result of this study, bond strength occurred by both of direct and indirect tensile test due to monotonic load is highly correlated such as coefficient of determination of 0.75 and P-value of 0.002. However, bond strength by indirect tensile test was relatively higher than bond strength by direct tensile test. It was known that correlation between direct and indirect tensile test was possible to use the characteristics analysis of bond fatigue behavior based on bond strength due to cyclic load which can simulate real field behavior of bonded concrete overlay.

Bond Strength and Tensile Strength of Polymer-Modified Mortar Using Styrene and Butyl Acrylate (St/BA를 혼입한 폴리머 시멘트 모르타르의 부착강도 및 인장강도 특성)

  • You, Kipyo;Hyung, Wongil
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.820-826
    • /
    • 2014
  • The objective of this study is to find the relationship between the tensile strength of the polymer film and the bond strength and tensile strength of the polymer-modified mortar using styrene (St) and butyl acrylate (BA), and porosity. In the test results, the bond strength and tensile strength of the polymer-modified mortar increased with increases in the tensile strength of polymer film and the fine pore volume.

Prying Action of Spliced Reinforcements in Tension (인장 겹침이음에서 프라이 거동의 영향)

  • Chun, Sung-Chul;Choi, Dong-Uk;Ha, Sang-Su;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1085-1088
    • /
    • 2008
  • Splice of reinforcement is inevitable in reinforced concrete structures and, generally, lap splices are used. Lap length for tension splice is determined from development length in tension. The development length is calculated from an experimental model which was based on data of tests on anchorage and splice. Longitudinal reinforcements in flexural members are deformed and, therefore, prying action happens in spliced reinforcements unlike anchored reinforcements. The prying action induces tensile stress in cover concrete and this tensile stress plays the same role to a circumferential tensile stress caused by bond. Because splitting failure is assumed to occur when the summation of tensile stresses caused by the prying action and the bond is equal to the tensile strength of the concrete, the prying action reduces the bond strength of spliced reinforcements. A theoretical model for the prying action is developed and effects of the prying action on the bond strength are assessed. The tensile stress by the prying action is proportional to tensile strength and modulus of elasticity of reinforcements. In addition, the tensile stress is inversely proportional to spacing of reinforcements. Consequently, longer splice length is required for spliced reinforcements with small spacing in flexible members.

  • PDF

괘선/구부림 강공과 종이물성과의 상관관계 II

  • 조신환;오홍석;최대웅;여성국
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.203-203
    • /
    • 2001
  • 패선/구부림 가공은 후가공의 일부분으로서. 박스가공 시 종이에 패션치기와 구부림 공정이 들어가게 되며 이때 종이표면이 약할 경우 금이가는 현상이 발생한다. 본 연구 는 이러한 가공과 다층판지의 물성이 패선/구부림 적성에 영향을 미치는가에 대한 연 구로서 2000년도 추계논문발표시 종이 물성 중 패션/구부림 가공에 영향을 주는 것으 로 표면층의 층간결합력과 내절도 그리고 인장강도가 중요한 변수로 작용하는 결과를 얻었으며 이후 이들 영향인자 중 핵심영향인자의 도출을 위하여 침엽수를 배합하지 않 은 상태에서 상질고지 재생펄프를 고해 처리하여 특성을 향상시켜 실제 공정에서 실험 하였다. 1차 실험은 공정실험 전 예비 실험으로서 재생펄프를 공장 refiner를 사용하여 고해 처리하여 강도향상 효과를 분석하였다. 분석결과 인장강도는 증가하나 내절도 향상은 기대에 미치지 못하는 것으로 나타났다. 이에 따라 1차 공정실험 조건을 부착량을 향상 시켜 인장강도를 침엽수 펄프 배합수준으로 끌어올리는 방법을 선택하였으며 그 결과 패선/구부림 적성이 기존대비 양호한 결과를 얻었다. 즉 인장강도 향상으로 침엽수 펄 프를 대체할 수 있다는 결론을 얻었다. 2차 실험은 부착량 대선 refiner를 사용하여 상 질고지 재생펄프를 고해 처리하여 인장강도를 향상시켜 생산하였다. 실험결과 인장강도 가 침엽수펄프 배합 시 대비 동등이상 수준에 있을 경우 패션/구부린 가공 시 금이가 는 터짐문제는 발생하지 않는 것으로 나타났다. 3차 실험은 두 차례 동안 실시된 공정 실험을 기준으로 refining 처리와 부착량 기준을 설정하고 장시간 생산하여 그 특성을 측정하였다. 실험결과 표면층의 인장강도가 낮아질 때 패선/구부림 적성이 약해지는 경 향을 보였으며 인장강도가 기존 침엽수펄프 배합대비 동등이상일 경우 패선/구부림 가 공적성이 양호하게 나타났으며 실제 가공업체에서도 터짐 문제가 발견되지 않았다. 결론적으로 표면층의 인장강도가 패션/구부림에 가장 중요한 변수로 작용하며 어떠 한 형태로 표면층의 인장강도를 향상시킬 경우 침엽수 펄프는 재생펄프로 대체가 가능 할 것으로 판단된다.

  • PDF

Bond Characteristics of High-Strength Concrete (고장도 콘크리트의 부착특성에 관한 연구)

  • Lee, Joon-Gu;Mun, In;Yum, Hwan-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.499-506
    • /
    • 2001
  • Eight direct tension tests were conducted to study the bond characteristics and crack behavior in high-strength concrete axial members. The main variable was the concrete strength up to 61-63 MPa. The specimens consisted of two different types of the short specimens modeled the part between transverse cracks and the long specimens having numerous transverse cracks. The results obtained show that the bond strength increases in proportion to compressive strength. Thereby, in high-strength concrete the length of stress-disturbed region is shortened and the space of adjacent transverse cracks become smaller. Although the concrete strength varies from 25 MPa to 61 MPa, the split cracking loads remain constant, while transverse cracking loads vary as variation of concrete tensile strength. Accordingly, the current code provisions for development length may need reconsideration in high-strength concrete members, and it is recommended that either thicker cover or transverse reinforcement should be additionally provided for high-strength concrete members.

Experimental Study on the Bond Properties between GFRP Reinforcements and Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트와 GFRP 보강근의 부착특성에 관한 실험적 연구)

  • Choi, Yun-Cheul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.573-581
    • /
    • 2013
  • In this paper, an experimental investigation of bond properties between steel fiber reinforced concrete and glass fiber reinforced polymer reinforcements was performed. The experimental variables were diameter of reinforcements, volume fraction of steel fiber, cover thickness and compressive strength of concrete. Bond failure mainly occurred with splitting of concrete cover. Main factor for splitting of concrete is tension force occurred by the displacement difference between reinforcements and concrete. Therefore, in order to prevent the bond failure between reinforcements and concrete, capacity of tensile strength of concrete cover should be upgraded. As a results of test, volume fraction of steel fiber significantly increases the bond strength. Cover thickness changes the failure mode. Diameter of reinforcements also changes the failure mode. Generally, diameter of reinforcement also affects the bond properties but this effect is not significant as volume fraction of fiber. Increase of compressive strength increases the bond strength between concrete and reinforcement because compressive strength of concrete directly affects the tensile strength of concrete.

An Experimental Study on Flexural Tensile Strength and Bond Strength Between Concrete-to-Concrete (콘크리트의 휨인장강도 및 신·구콘크리트 사이의 부착강도에 관한 실험 연구)

  • Yang, In-Hwan;Yoo, Sung-Won;Seo, Jung-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.155-163
    • /
    • 2009
  • The purpose of this paper is to investigate the bond strength between old and new concrete as well as flexural tensile strength of concrete. To achieve this purpose, a comprehensive experimental program has been set up and strength tests using a series of specimens have been carried out. The present study represents that the flexural bond strength between old and new concrete is much smaller than that of flexural tensile strength. The ratio of bond strength to flexural tensile strength ranged through 15~27%. It is seen that concrete-to-concrete bond strength has been affected by curing condition. Also, test results of tensile strength show that recommendation by ACI 363 committee is estimated to be more realistic than another recommendations for predicting tensile strength of concrete.

Flexural Adhesive Performance of RC Beams Strengthened by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 RC보의 휨 부착성능)

  • 유영찬;최기선;최근도;김긍환;이한승
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.549-555
    • /
    • 2002
  • Tensile strength of CFRP (Carbon Fiber Reinforced Polymer) is approximately 10 times higher than that of the steel reinforcement, but the design strength of CFRP is normally limited by unpredictable bond failure between RC and CFRP. Many researches concerned with bond behavior between RC and CFRP have been carried out to prevent the bond failure of RC beam strengthened by CFRP, but the national design code for design bond strength of CFRP has not been constructed. In this study, three beam specimens strengthened by CFRP under the parameters of bonded length were tested to derive the design bond strength of CFRP for the RC flexural members. Each bonded length was calculated based on the bond strength of JCI and CFRP manufacturing company. Also, another two beam specimens strengthened by CFRP were tested to inspect the construction environment effects such as mixing error of epoxy resin, and the amount of epoxy primer. From the test results, it is concluded that the maximum design bond strength of CFRP to RC flexural member is considered to be $\tau$a =8 kgf/㎠.

Experimental Evaluation of Bearing and Bond Strengths in Compression Splices (철근 압축이음에서 지압강도와 부착강도의 실험적 평가)

  • Chun, Sung-Chul;Lee, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • Compression splices are required for all compression members in almost all of the floors in high-rise buildings. Therefore, a clear understanding of the behavior of compression splices can provide a rational design of compression splices. Tests of compression splices with bearing only and bond only cases were conducted to investigate the component resistance characteristics of compression splices. Test results showed that the circumferential tensile stresses induced by bearing and bond overlapped at the end of the splice length deterred bond and bearing splices from developing target splicing strength when both normal bond and bearing splices were used. In particular, the bearing strength was more significantly reduced than the bond strength since the bearing relied on the limited area near the end of the splice length. However, the strength of the normal splice was always higher than the strength of the bond only or the bearing only case. Consequently, the study results showed that splice strength in compression cannot be improved by means of removing bond or bearing. In addition, the bond strength in bond only splices was nearly same as the bond strength in tension splices and the strength increase of compression splice is attributed to end bearing only characteristic.