• Title/Summary/Keyword: 인장하중방향

Search Result 226, Processing Time 0.03 seconds

Local Bond Stress-Slip Model of GFRP Rebars (GFRP 보강근의 부착응력-미끄럼 모델)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.133-136
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Glass Fiber Reinforced Polymer (GFRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of GFRP. However, there remain various aspects of GFRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between GFRP and concrete. In this study, the bond-behavior of GFRP bars in concrete is investigated via the pullout test with varying parameters: surface condition of GFRP bars and concrete compression strength. And the local bond-stress model of GFRP rabars with applying monotonc load was also derived from the present test.

  • PDF

Dynamic Analysis of a Tension Leg Platform Using Morison's Equation (Morison 방정식을 이용한 Tension Leg Platform의 동정해석)

  • Pyun, Chong Kun;Park, Woo Sun;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.223-228
    • /
    • 1987
  • An efficient method for the calculation of wave forces on a tension leg platform(TLP) is presented in this paper. It is based on the Morison's equation with two corrective terms. One is the reduction of the inertia forces on the vertical columns in order to include the wave diffraction effect particularly for small wave conditions. The other is the inclusion of the hydrodynamic forces acting at the bottoms of the columns. Numerical studies are carried out for a TLP in 1000 ft water with two different wave heading angles($0^{\circ}$ and $45^{\circ}$). The reponse amplitude operators(RAO's) for the TLP motions and top tether tension variations are obtained by the present method and the theoretically more accurate method based on the diffraction theory. A comparison has been made between the results obtained by two methods.

  • PDF

Study on Ultrasonic Birefringence by Uniaxial Stress in Axisymmetric Solids (축대칭 고체내부의 단축 응력에 의한 초음파 복굴절 특성 연구)

  • Kim, Noh-Yu;Chang, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.336-342
    • /
    • 2006
  • Uniaxial stress in ail axisymmetric body is the simplest example of ultrasonic stress measurement. However, the birefringence theory cannot be applied for axisymmetric solids because the axisymmetric stress field in the body does not make shy velocity difference in SH waves propagating in the axisymmetric direction. Conventional ultrasonic technique using the time-of-flight method also needs ultrasonic lengths of the unstressed and stressed body, which is very impractical. In this paper, the birefringence effect in axisymmetric solids under uniaxial stress is formulated to evaluate the axial stress inside the solid without measuring tile ultrasonic length. Theoretical derivation for the birefringence characteristics in the axisymmetric solids is made using the longitudinal and shear waves instead of two horizontally polarized shear waves. Tension test is conducted for carbon-steel specimen to measure the birefringence coefficient and investigate the validity of the theory. It is observed from experimental results that the velocity difference in two differently polarized acoustic waves is proportional to the uniaxial stress in the axisymmetric solid with a good agreement with the theoretical value.

Fracture Behavior of a Stacked Concrete Structure Based on the Fracture Mechanics (적층한 콘크리트 복합구조체의 파괴역학적 거동)

  • Kim, Sang-Chul;Kim, Yeon-Tae
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.119-127
    • /
    • 1999
  • The objective of this study is to simulate the fracture behavior of composite structure bonded with more than 2 different cementitious materials. For this, concrete and cement were stacked and bonded in a direction perpendicular to loading and specimens were tested. Each constituent material of concrete and cement was fabricated independently also, and three point bending and indirect tensile tests were carried out for the acquisition of measured values applicable to the proposed model. As a result of comparing theoretical results and experimental ones, it was found that the proposed model derived from fictitious crack theory can be used to predict the fracture behavior of composite structures on the vases of well agreement with experimental results. It was also noted that the degree of improvement of fracture energies and strengths is greatly dependent on the stacking sequence of layers composing of a composite structure. Thus, it can be concluded that brittleness or ductility of a composite structure can be accomplished by a proper arrangement of layers on one's purpose throughout the proposed analysis.

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.

Effect on the structural integrity and fatigue damage monitoring of smart composite structures with embedded intensity based optical fiber sensors (삽입된 광강도형 광섬유센서가 지능형 복합재 구조물의 건전성에 미치는 영향 및 피로손상 감시)

  • Lee, Dong-Chun;Lee, Jung-Ju;Seo, Dae-Cheol;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 2001
  • In this study, the effects of embedded optical fibers on the static properties under tensile load and dynamic properties under fatigue load of composite laminates were investigated by experimental tests and finite element analysis. Based on the results, it can be concluded that the embedded optical fiber sensors do not have significant effects on the structural integrity of the smart composite structures except when the sensors are embedded perpendicular to the adjacent reinforcing fibers under fatigue loading. An intensity-based optical fiber sensor was embedded in the crossply composite laminates to monitor the fatigue damage by detecting the stiffness changes of the laminates. The result of this experiment has shown that the intensity-based optical fiber sensor has large potential to monitor the fatigue damage of composite structures by detecting the stiffness changes of the structures with simple and inexpensive instruments and without complex post-processing of measured signals. In addition, the optical fiber sensor showed good resistance to fatigue loading and wide sensing ranges of stiffness.

  • PDF

Evaluation of Yield Surfaces of Epoxy Polymers Considering the Influence of Crosslinking Ratio: A Molecular Dynamics Study (분자동역학 해석 기반 가교율에 따른 에폭시 폴리머의 항복 표면 형상 평가)

  • Jinyoung Kim;Hyungbum Park
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.369-376
    • /
    • 2023
  • This study focuses on investigating the influence of epoxy polymer crosslinking density, a crucial aspect in composite material matrices, on the yield surface using molecular dynamics simulations. Our approach involved generating epoxy models with diverse crosslinking densities and subjecting them to both uniaxial and multiaxial deformation simulations, accounting for the elasto-plastic deformation behaviors. Through this, we obtained key mechanical parameters including elastic modulus, yield point, and strain hardening coefficient, all correlated with crosslinking conversion ratios. A particularly noteworthy finding is the rapid expansion of the yield surface in the biaxial compression region with increasing crosslinking ratios, compared to the uniaxial tensile region. This unique behavior led to observable yield surface variations, indicating a significant pressure-dependent relationship of the yield surface considering plastic strain and crosslinking conversion ratio. These results contribute to a deeper understanding of the complex interplay between crosslinking density and plastic mechanical response, especially in the aspect of multiaxial deformation behaviors.

Evaluation of Mechanical Properties and Low-Velocity Impact Characteristics of Balsa-Wood and Urethane-Foam Applied to Impact Limiter of Nuclear Spent Fuel Shipping Cask (사용후핵연료 수송용기 충격완충체에 적용되는 발사목과 우레탄 폼의 기계적 특성 및 저속충격특성 평가 연구)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Choi, Woo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1345-1352
    • /
    • 2012
  • This paper aims to evaluate the low-velocity impact responses and mechanical properties of balsa-wood and urethane-foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane-foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa-wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low-velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5 J. The experimental results showed that both the urethane-foam and the balsa-wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane-foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa-wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask.

Fatigue Behavior of Composites with different Fiber Orientation (섬유 방향에 따른 복합재 피로특성에 관한 연구)

  • Kang, Tae-Young;An, Hyo-Seong;Chun, Heoung-Jae;Park, Jong-Chan
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2021
  • Due to the high specific strength and stiffness of the composite materials, the composite materials have been extensively used in various industries. In particular, carbon fiber reinforced composites are widely used in many mechanical structures. In addition, since carbon fiber reinforced composites have anisotropic properties, to understand the fatigue behavior of composites with different fiber orientation is very important for the efficient structural design. Therefore, in this paper, the effect fiber orientation on the fatigue life of composite materials was experimentally evaluated. For this purpose, tensile and fatigue tests were performed on the off-axis specimens (0°, 10°, 30°, 45°, 60°, 90°) of the composite materials. As a result of the fatigue tests, the fatigue strength of the composites decreased significantly as the fatigue strength slightly deviated from 0 degrees. On the other hand, the more deviated, the less decreased. This is because the role of supporting the load of fibers decreased as the stacking angle increased. In addition, the fatigue behavior was analyzed by introducing a fatigue strength ratio (Ψ) that eliminates the fiber orientation dependence of the off-axis fatigue behaviors on the unidirectional composites. The off-axis fatigue S-N lines can be reduced to a single line regardless of the fiber orientation by using the fatigue strength ratio (Ψ). Using the fatigue Ψ-N line, it is possible to extract back to any off-axis fatigue S-N lines of the composites with different fiber orientations.

Shear Force Variation of Stiffening Girder caused by Vibration of Stay Cable (사장 케이블 진동에 의한 보강형의 전단력 변화)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.1-8
    • /
    • 2009
  • Stay cable is easily exposed to vibration induced rainy wind effects. There are some problems for not only unexpected vibration but also well-known vibration. An outbreak of displacement by the said effects brings damages such as over-tension of cables and barriers, fatigue of anchorages and dampers, and additional shear force variation of stiffening girders. This study suggests analytic methodology for dynamic tension variation of cables and shear force variation of stiffening girders. Additionally this study announces with dynamic problems for cable stayed bridge briefly. To realize this subject, we divide restoring force into chord component and normal component and then make up the differential equations which can satisfy physical phenomenon for each component. Finally we apply adequate functions such as sinusoidal and parabola in order to reduce these differential equations. Therefore we can meet with good results through a series of above process. As a remarkable result, CIP recommendations (2002) give inadequate solution with over 10% error. However it gives very good solution if parts of our study are reflected at the said recommendations. The fact means that CIP recommendations (2002) well-known as international standard of stay cables are not even concern about this subject yet. For verification of this study, F.E. analysis using E.C.C. with external forces was fulfilled, and the accuracy and conciseness of this study were shown.