• Title/Summary/Keyword: 인장피로

Search Result 361, Processing Time 0.022 seconds

핵융합로용 초전도 전자석 구조재의 파괴역학적 특성에 관한 연구

  • 김지현;황일순
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.52-57
    • /
    • 1997
  • 국제 열 핵융합로 (International Thermonuclear Experimental Reactor) 의 중앙 솔레노이드(solenoid) 초전도 전자석의 피복관 (conduit) 으로서 가장 유력한 후보 재료인 니켈-철 기저 초합금에 대한 개선된 파괴역학적 거동 예측 모형을 개발하기 위하여 피로균열 성장과 파괴 인성 치의 측정이 사용되었다. 유한 요소법을 사용하는 상용 구조해석 코드인 ANSYS 제 5.2판에 의해 초전도 전자석 피복관 재료에 대한 탄소성 파괴역학적 거동을 살펴보았다. 정확한 파괴 기준을 개발하기 위하여 삼차원 J 적분 인자에 의한 결과를 사용하였다. 얇은 피복관재의 경우에 절대온도 4도에서의 적합한 파괴 인성치는 실제 단면효과를 고려한 표면균열 인장시험 결과를 토대로 J 적분으로 도출한 150 MPaㆍm$^{1}$2/ 로 제시되었다.

  • PDF

Analysis of Influence Factors on Hydrogen Embrittlement of Pipe Steel according to Hydrogen Pipeline Operating Conditions (수소배관 운영 조건에 따른 배관강이 수소취성에 미치는 영향 인자 분석)

  • JONGHYUN BAEK;YUNCHAN JANG;CHEOLMAN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.2
    • /
    • pp.216-229
    • /
    • 2024
  • Pipeline steels for hydrogen transmission may cause hydrogen embrittlement due to absorption and diffusion of hydrogen through metals. Hydrogen pipes exhibited similar mechanical properties to atmospheric conditions in terms of tensile and yield strength in a hydrogen atmosphere. This paper aims to provide relevant information regarding hydrogen embrittlement in hydrogen transmission pipeline.

A Study on the Evaluation Technique of Damage of Metal Matrix Composite Using X-Ray Fractography Method (X선 프렉토그래피기법을 이용한 금속복합재료의 피로손상 해석에 관한 연구)

  • Park, Young-Chul;Yun, Doo-Pyo;Park, Dong-Sung;Kim, Deug-Jin;Kim, Kwang-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.3
    • /
    • pp.172-180
    • /
    • 1998
  • It is attempted to verify the Quantitative relationship between fracture mechanical parameters (${\Delta}K$, $K_{max}$) and X-ray parameters (residual stress, half-value breadth) of A12009-15v/o $SiC_w$ composite, and normalized SS41 steel. In this study, fatigue crack propagation test were carried out and X-ray diffraction was applied to fatigue fractured surface in order to investigate the change of residual stress and half-value breadth on fatigue fractured surface. And it is loaded prestrain to each tensile specimen, A12009-15v/o $SiC_w$ composite(0.3, 0.5, 1, 1.5, 2%) and normalized SS41 steel(0.63, 2.25, 7.50, 13.7, 20%), for investigating plastic strain rate using nondestructive measurement method. X-ray diffraction was applied to the prestrained tensile specimens in order to measure the change of residual stress and half-value breadth.

  • PDF

A study on the fatigue bending strength of quasi-isotropic CFRP laminates subjected to impact damage (축격손상을 받은 의사등방성 탄소섬유강화 복합재의 굽힘피로강도)

  • Park, Soo-Chul;Park, Seol-Hyeon;Jung, Jong-An;Cha, Cheon-Seok;Yang, Yong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.688-695
    • /
    • 2017
  • Compared to metal, CFRP has excellent mechanical characteristics in terms of intensity, hardness, and heat resistance as well as its light weight that it is used widely in various fields. Therefore, this material has been used recently in the aerospace field. On the other hand, the material has shortcomings in terms of its extreme vulnerability to damage occurring internally from an external impact. This study examined the intensity up to its destruction from repeated use with the internal impact of a CFRP laminated plate that had also been exposed to external impact obtain design data for the external plate of aircraft used in the aerospace field. For the experimental method, regarding the quasi-isotopic type CFRP specimen and orthotropic CFRP specimen that are produced with a different layer structure, steel spheres with a diameter of 5 mm were collided to observe the resulting impact damage. Through a 3-point flexural fatigue experiment, the progress of internal layer separation and impact damage was observed. Measurements of the flexural fatigue strength after the flexural fatigue experiment until internal damage occurs and the surface impacted by the steel spheres revealed the quasi-isotopic layer structure to have a higher intensity for both cases.

Fatigue Constrained Topological Structure Design Considering the Stress Correction Factor (응력 수정 계수를 고려한 피로 제약 조건 구조물의 위상최적설계)

  • Kim, Daehoon;Ahn, Kisoo;Jeong, Seunghwan;Park, Soonok;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • In this study, a structure satisfying the fatigue constraint is designed by applying the topology optimization based on the phase field design method. In order to predict life based on the stress value, high cycle fatigue failure theory in which stress acts within the range of elastic limit is discussed and three fatigue theories of modified-Goodman, Smith-Watson-Topper and Gerber theory are applied. To calculate the global maximum stress, a modified P-norm stress correction method is used. As a result, it is possible to obtain topology optimization results that minimize the volume while satisfying the fatigue constraints. By applying the phase field design method, a simple shape with a minimized gray scale was obtained, and the maximum stress value acting on the optimization result became very close to the allowable stress value due to the modified P-norm stress method. While previous studies does not consider the stress correction factor, this study proposes the determination method regarding the stress correction factor considering loading effects related to axial stress components.

A Study on the Fatigue Strength of the 3-D Reinforced Composite Joints (3-차원 보강 복합재 체결부의 피로강도 특성 연구)

  • Kim, Ji-Wan;An, Woo-Jin;Seo, Kyeong-Ho;Choi, Jin-Ho
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.322-327
    • /
    • 2022
  • Composite lap joints have been extensively used due to their excellent properties and the demand for light structures. However, due to the weak mechanical properties in the thickness direction, the lap joint is easily fractured. various reinforcement methods that delay fracture by dispersing stress concentration have been applied to overcome this problem, such as z-pinning and conventional stitching. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. I-fiber stitching method is a promising technology that combines the advantages of both z-pinning and the conventional stitching. In this paper, the static and fatigue strengths of the single-lap joints reinforced by the I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process and I-fiber reinforcing effects were evaluated according to adherend thickness and stitching angle. From the experiments, the thinner the composite joint specimen, the higher the I-fiber reinforcement effect, and Ifiber stitched single lap joints showed a 52% improvement in failure strength and 118% improvement in fatigue strength.

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Study on the Physical Characteristics of Water Supply Steel Pipe according to Temperature Change (수도용 강관의 온도변화에 따른 물리적 특성에 대한 연구)

  • Kim, Woo-young;Jang, Am
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.733-740
    • /
    • 2017
  • 'The facilities standards of water supply' issued by the Ministry of Environment in 2004 indicates that expansion joints cannot be used in welding water supply steel pipes. However, their reason is not clear and it is difficult to confirm the stability of the steel pipe for a water supply pipeline. The purpose of this study is to determine whether or not an expansion joint is necessary to improve the stability of water supply in steel pipe through a displacement analysis of the pipework. The test results are as follows. Firstly, it was found that expansion and contraction of the water supply steel pipe (D 2,400 mm) occur repeatedly in 4 cycles per year, and the maximum expansion and contraction amount of the pipe is 13.03 mm in 1.24 km pipelines. Secondly, the thermal stress caused by expansion and contraction of the steel pipe is $13.7{\sim}36.1kgf/cm^2$ according to the burial depth (0~4 m). The main comparison factors to determine the stability of the steel pipe (STWW 400) were the allowable tensile strength and the fatigue limit, which were computed to be $4,100kgf/cm^2$ and $1,840kgf/cm^2$, respectively. Finally, the thermal stress of the steel pipe is very small compared to the allowable tensile stress and fatigue stress. Therefore, thermal stress does not affect the stability of the steel pipe, although the expansion and contraction of the steel pipe occurs by temperature changes. In conclusion, the study demonstrated that expansion joints are not required in water supply steel pipelines.

A Study on the Mechanical Properties of Gas Pressure Welded Splices of Deformed Reinforcing Bar (가스압접 이형철근의 기계적 강도 특성 연구)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • Reinforcing bar splices are inevitable in reinforced concrete structure. In these days, there are three main types of splices used in reinforced concrete construction site - lapped splice, mechanical splice and welded splice. Low cost, practicality in construction site, less time consuming and high performance make gas pressure welding become a favorable splice method. However, reinforcing bar splice experiences thermal loading history during the welding procedure. This may lead to the presence of residual stress in the vicinity of the splice which affects the fatigue life of the reinforcing bar. Therefore, residual stress analysis and tensile test of the gas pressure welded splice are carried out in order to verify the load bearing capacity of the gas pressure welded splice. The reinforcing bar used in this work is SD400, which is manufactured in accordance with KS D 3504. The results show that the residual stresses in welded splice is relatively small, thus not affecting the performance of the reinforcing bar. Moreover, the strength of the gas pressure welded splice is high enough for the development of yielding in the bar. As such, the reinforcing bar with gas pressure welded splice has enough capacity to behave as continuous bar.

고강도 및 파괴인성을 갖는 AI-Li-Cu 합금 개발

  • Kim, Song-Hui;Yun, Yeo-Beom;Hwang, Yeong-Hwa;Choe, Chang-U;Hong, Jun-Pyo;Lee, Eung-Jo
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1993
  • High strength and fracture toughness of Al-Li-Cu alloy(2090 Al alloy) have been achieved by the improvement of melting and casting, extrusion and heat treatment techniques. To establish the sucessful process for semi-industrial scale ingot(20Kg) the following areas have been investigated: (1) Improvement of melting and casting techniques for ingot by introducing atmospheric modifications, vacuum and rotary degassing, and deslagging. (2) The effect of heat treatment on mechanical properties (3) Mechanical characterization by tensile test, fracture toughness test and fatigue crack propagation test. High mechanical properties were found to be intimately related with ingot soundness. Tensile strength of final products varied from 534MPa to 566MPa in peak aged condition while elongation/ductility ranged from 9.0% to 11.9%. From the fracture toughness test with using compact tensile specimen, plane strain fracture toughness($K_{Ic}$) appeared to be 39MPa${\surd}$m in peak aged condition and 23MPa${\surd}$ m in underaged condition. When load ratios of 0.1, 0.3 and 0.5 were given ${\Delta}K_{th}$ was 6.0MPa${\surd}$ m, 5.3MPa${\surd}$ m and 4.3MPa${\surd}$ m respectively.

  • PDF