• Title/Summary/Keyword: 인장파괴특성

Search Result 378, Processing Time 0.024 seconds

Fracture Behavior of Concrete and Equivalent Crack Length Theory (콘크리트의 파괴거동규명과 등가균열(等價龜裂)길이 이론확립(理論確立)에 관한 연구)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.59-68
    • /
    • 1987
  • Several series of fracture tests were conducted to explore the fracture characteristics and to determine the fracture energy of concrete. A stable three-point bend test was employed to generate the load-deflection curves. The fracture energy may then be calculated from the area under the complete load-deflection curve. The initial notch-to-beam depth ratio (${\alpha}_0$/H) was varied from zero to 0.6. The prediction formula for the fracture energy of concrete is also derived and is found to depend on the tensile strength and aggregate size. The proposed fracture energy formula can be used for the fracture analysis of concrete structures. The present study also devises an equivalent crack length concept to predict the maximum failure loads of concrete beams. A simple formula for the equivalent crack length is proposed.

  • PDF

The effect of weathering test on the chemical property for rubber compounds surface (고무화합물 표면의 화학적 특성에 미치는 내후성시험의 영향)

  • Park, Soo-Yeon;An, Byung-Man;Lee, Doo-Myeon;Yoon, Young-Ja; Jung, Ho
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.157-164
    • /
    • 2002
  • 본 연구에서는 실생활에 응용되는 Chloroprene계 고무에 대하여 30개월 동안 옥외 폭로를 행하였으며 동시에 Xenon-arc Type의 촉진 내후성시험기를 이용하여 그에 따른 내후성의 변화를 평가하였다. 폭로기간에 따른 인장강도와 신장률의 변화를 측정하였고 폭로면의 표면층에 대하여 FT-IR과 SEM을 사용하여 화학적 특성 및 미세구조를 분석하였다. 태양복사와 습도에 노출된 고무의 표면은 매우 짧은 기간에 파괴되었고, 고무 내부에 존재하는 가교제들의 용출을 확인할 수 있었으며, 산소와의 결합으로 내부층보다 고무의 표면에서 더 많은 가수분해와 광분해가 이루어진다는 것을 확인할 수 있었다. 이와 같은 표면층의 변화와 파괴는 고무의 기계적 성질에도 의미 있는 영향을 주었다.

  • PDF

A Study on Fracture Behaviors of Single-Edge-Notched Glass Fiber/Aluminum Laminates Using Acoustic Emission (음향방출법을 이용한 편측노치를 갖는 유리섬유/알루미늄 적층판의 파괴거동 해석)

  • Woo Sung-Choong;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2005
  • Fracture behaviors of single-edge-notched monolithic aluminum plates and glass fiber/aluminum laminates under tensile loadings have been studied using acoustic emission(AE) monitoring. AE signals from monolithic aluminum could beclassified into two different types. For glass fiber/aluminum laminates, AE signals with high amplitude and long duration were additionally confirmed on FFT frequency analysis, which corresponded to macrocrack propagation and/or delamination. AE source location determined by signal arrival time showed the zone of fracture. On the basis of the above AE analysis and fracture observation, characteristic features of fracture processes of single-edge-notched glass fiber/aluminum laminates were elucidated according to different fiber ply orientations and fiber/aluminum lay-up ratios.

Self-Diagnosis for Fracture Prediction of Concrete Reinforced by New Type Rib CFGFRP Rod and CF Sheet (신형 리브재 CFGFRP 보강근 및 CF 보강시트로 보강된 콘크리트의 파괴예측 자가진단)

  • Park, Seok-Kyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of carbon fiber reinforced concrete has been tested. Then after examining change in the value of electrical resistance at each flexural weight-stage of carbon fiber in CFGFRP (carbon fiber and glass fiber reinforcing plastic) with new type rib and carbon sheet for concrete reinforcing, the correlations of electrical resistance and load as a function of strain, deflection were analyzed. As the results, it is clarified that when carbon fiber rod, rib and sheet fracture, the electrical resistance of it increase largely, and specially in case of CFGFRP, afterwards glass fiber tows can be resist the load due to the presence of the hybrid (carbon and glass) reinforced fiber. Therefore, it can be recognized that reinforcing bar and new type rib of CFGFRP and sheet of CF could be applied for self-diagnosis of fracture in reinforced FRP concrete.

Effects of Vulcanization Type end Temperature on Physical Properties of Natural Rubber Compounds (가황형태 및 온도가 천연고무 컴파운드의 물리적 특성에 미치는 영향)

  • Rhee, John-M.;Yoon, Chan-Ho;Huh, Yang-Il;Han, Seung-Cheol;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.173-179
    • /
    • 2000
  • Cure characteristics. tensile properties, and dynamic properties were investigated on the carbon black-filled natural rubber compounds, in which three typical vulcanization types conventional vulcanization(Conv), semi-efficient(Semi-EV), and efficient(EV) vulcanizations were used. The effects of vulcanization temperature on both the mechanical property and aging resistance of rubber compounds were also investigated. The Conv cure system showed a slightly slower rate of vulcanization than those of Semi-EV and EV ones. On the other hand, it showed a higher value in the maximum torque of cure curve. Higher tensile moduli were observed in Conv system than those in Semi-EV and EV ones, while lower elongation at break were obtained in Conv one. The tensile strength at break were found to be about the same for three cute systems. Hardness, modulus, and tensile strength decreased with increasing the vulcanization temperature, and the degree of changes in the properties was found to be smaller for EV and Semi-EV systems than that in Conv one. The EV system was found to be superior in thermal-aging resistance to Conv one.

  • PDF

Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.458-466
    • /
    • 2020
  • The purpose of this experimental research is to evaluate the compressive and tensile behaviors of high performance hybrid fiber reinforced concrete(HPHFRC) using amorphous steel fiber(ASF) and polyamide fiber(PAF). For this purpose, the HPHFRCs using ASF and PAF were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively. And then the compressive and tensile behaviors such as the compressive strength, compressive toughness, direct tensile strength, and stress-strain characteristics under compressive and tensile tests were estimated. It was observed from the test results that the compressive strength of HPHFRC was slightly decreased than that of plain concrete, but the compressive toughness, compressive toughness ratio, and direct tensile strength of HPHFRC increased significantly. Also, it was revealed that the plain concrete showed brittle fracture after the maximum stress from the stress-strain curves, but HPHFRC showed strain softening.

Effect of Bottom Ash Aggregate Contents on Mechanical Properties of Concrete (콘크리트의 역학적 특성에 대한 바텀애시 골재 양의 영향)

  • Ahn, Tae-Ho;Yang, Keun-Hyeok;Ha, Jung-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.379-386
    • /
    • 2020
  • The present study examined the effect of bottom ash aggregate contents on the compressive strength gain and mechanical properties(modulus of elasticity and rupture and splitting tensile strength) of concrete. Main test parameters were water-to-cement ratio and bottom ash aggregate contents for replacement of natural sand. Test results showed that the 28-days compressive strength of concrete and mechanical properties normalized by the compressive strength tended to decrease with the increase in bottom ash fine aggregate content. When compared with fib 2010 model equations, bottom ash aggregate concrete exhibited the following performances: lower rates of compressive strength gain at early ages but greater rates at long-term ages; slightly higher measurements for modulus of elasticity and rupture; and lower measurements for splitting tensile strength.

Natural Aging Effect on the Fiber Tensile Strength of Carbon Epoxy Pressure Vessel (자연 노화에 따른 카본 에폭시 압력용기의 섬유 인장 강도 변화)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyoung-Geun;Doh, Young-Dae
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • To evaluate and investigate the aging characteristics and the structural service lifetime of the CFV(carbon fiber pressure vessel), natural aging tests were carried out using the CFVs, which had been placed and aged at outdoor and indoor laboratories for 10 and 15 years, respectively. To obtain the probabilistic characteristics of ageing characteristics in aged CFVs, inner pressure loading test was conducted with ring specimens taken from aged CFVs. And, to observe the interface morphology of aged CFVs, the micro-photographs were taken by SEM microscope and the fractured interfaces between the carbon fiber and the matrix resin were scrutinized. Based on the Weibull parameters of the tensile failure strain of aged CFVs, the degradation of the 10 and the 15 year aged CFV occur by 19% and 23%, respectively, and the effect of the placement, whether being placed inside the laboratory or not, is not so significant. However, the outer layer protection, such as painting, is found very advantageous to prevent CFV from aging.

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.

Surface and Electrical Properties on EPDM/Silicone Composite Insulator (EPDM/Silicone 복합 절연체의 표면특성과 전기적 특성)

  • Shim, Dae-Sup;Park, Sung-Gyun;Kim, Bum-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.92-95
    • /
    • 2001
  • 고분자 복합체 절연재료는 porcelain 이나 glass 같은 세라믹 소재의 재료와 비교하여 옥외사용 시간의 관점에서 더 뛰어난 특정을 발휘한다. 그러나 노화되었을 때, 이들 옥외용 절연재료의 성질은 발수성이나 흡수성등과 같은 절연재료의 표면특성에 의해 변화한다. 이러한 표면특성의 변화는 누설전류에 의한 트래킹 (tracking), 침식 (erosion) 및 섬락현상(flashover) 등의 유전체 파괴에 이르게 한다. 본 연구에서는 고분자 복합체 절연재료로 널리 이용되고 있는 EPDM의 발수특성을 향상시키기 위해 기존에 이용되던 무기물 첨가제인 alumina hydrate(ATH)이외에 발수성이 뛰어난 실리콘 고무를 상용화제를 이용하여 블렌드하고, 각종 유기 첨가제 및 무기물 보강제를 이용하여 EPDM/Silicone 복합체를 제조하였다. EPDM/Silicone 복합체의 인장강도 및 유전강도는 실리콘의 함량이 증가할수록 낮아졌으며, 촉진 노화시험을 실시한 결과 $120^{\circ}C$까지 인장강도 및 신율을 유지하였다. 유전강도의 측정결과 복합체의 접촉각과 표면에너지 측정결과 Silicone 고무의 함량이 증가할수록 접촉각은 증가하고, 표면에너지는 낮아졌다. 경사평판법에의한 내트래킹성 측정결과 실리콘 함량이 증가할수록 내트래킹성은 우수하였으며, 실리콘 함량이 30%인 복합체에서는 트래킹 및 침식이 진행되지 않았다.

  • PDF