• Title/Summary/Keyword: 인장철근

Search Result 495, Processing Time 0.027 seconds

Theoretical Evaluation of the Post Tensioning Effect in Continuous Slabs (연속 슬래브의 포스트 텐셔닝 보강에 대한 이론적 분석)

  • Kim, Chang-Hyuk;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.105-116
    • /
    • 2009
  • Reinforced concrete (RC) structures have been most widely used because of their good economic efficiency. However, it is very weak in tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. On the other hand, it is generally known that prestressed concrete structures can be the most effective to overcome the demerits of RC structures by using various tendon lay-out and its amount. In the prestressed concrete members, the inflection points of tendons should be placed effectively for the deflection control and the moment reduction. Therefore, in this study, the equations of tendon profiles are derived in terms of polynomials that satisfy essential conditions of tendon geometries such as inflection points and natural curved shapes of tendons placed in continuous members, from which vertical components of prestressing forces can be also calculated. The derived high order polynomial expression for the distributed shape of the upward and downward forces was transformed to an simplified equivalent uniform vertical force in order to improve the applicability in the calculation of member deflection. The influences of vertical forces by tendons to deflection and moment in a continuous slab were also considered depending on the distance from column face to the location of tendons. The applicability of the proposed method was examined by an example of deflection calculation for the cases of slabs with and without tendons, and the efficiency of deflection control by tendons was also quantitatively estimated.

A Study on the Applicability of Partial Post-Tension Slab with Top Anchorage System (상향긴장식 부분PT를 사용한 슬래브의 적용성 분석)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Chang-Hyuk;Kim, Sang-Sik;Kim, Yong-Nam;Chung, Kwang-Ryang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.309-312
    • /
    • 2008
  • Reinforced concrete (RC) structures have been most widely used because of the economic efficiency. However, it is very weak to tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. Although it is generally known that prestressed concrete structures can be the most effective to overcome the demerit of RC structures, its application is very seldom in domestic construction for the difficult onsite circumstances. The post-tension method, which is well fit for buildings that are mostly indeterminate structures and beneficial for monolithic construction, has been introduced to just a few building construction. The application of full PT method into entire spans makes construction engineers feel very difficult due to the lack of current condition in construction fields. Therefore, this study proposed the partially applied PT method as an alternative, which can improve the deflection control of RC structures and reduce the construction difficulty by applying the PT method in a part of span length as needed, and analyzed its characteristics of structural behavior. In this study, the top anchorage was applied to improve the applicability of partial PT method, and the analysis results of slab behavior were compared to the measured values obtained from the post-tensioned slab constructed by the partial PT method.

  • PDF

Structural Performance Evaluation of Steel Fiber-Reinforced Concrete Beams with Recycled Coarse Aggregates (순환골재를 사용한 강섬유보강 콘크리트보의 구조 성능 평가)

  • Shin, Jae-Lin;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.-K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.215-227
    • /
    • 2015
  • In this study, twenty four steel-fiber reinforced concrete (SFRC) beams using recycled coarse aggregates (RCA) were manufactured to examine the shear behavior of SFRC and to determine the beams' ultimate shear strengths. The RCA replacement ratio was fixed at 30%. The variables studied in this investigation are: (1) shear span-to-depth ratios (a/d) of 2, 3 and 4; (2) longitudinal reinforcement ratio (${\rho}$) of 0.008 and 0.0127; and (3) steel fiber volume fractions ($V_f$) of 0, 0.5, 0.75 and 1%. Test results were analyzed and then compared with the findings and proposals of various other researchers. Based on the test results, the more steel fiber volume fraction is increased, the large crack resistance and shear strength are exhibited. Most of the experimental data is higher than the theoretical value. Therefore, steel-fiber reinforced concrete beams using recycled coarse aggregates are suggested to be applied for building structures.

Hysteretic Behavior and Seismic Resistant Capacity of Precast Concrete Beam-to-Column Connections (프리캐스트 콘크리트 보-기둥 접합부의 이력거동 및 내진성능)

  • Choi, Hyun-Ki;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.61-71
    • /
    • 2010
  • Five half-scale beam-to-column connections in a precast concrete frame were tested with cyclic loading that simulated earthquake-type motions. Five half -scale interior beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including one monolithic specimen and four precast specimens. Variables included the detailing used at the joint to achieve a structural continuity of the beam reinforcement, and the type of special reinforcement in the connection (whether ECC or transverse reinforcement). The specimen design followed the strong-column-weak-beam concept. The beam reinforcement was purposely designed and detailed to develop plastic hinges at the beam and to impose large inelastic shear force demands into the joint. The joint performance was evaluated on the basis of connection strength, stiffness, energy dissipation, and drift capacity. From the test results, the plastic hinges at the beam controlled the specimen failure. In general, the performance of the beam-to-column connections was satisfactory. The joint strength was 1.15 times of that expected for monolithic reinforced concrete construction. The specimen behavior was ductile due to tensile deformability by ECC and the yielding steel plate, while the strength was nearly constant up to a drift of 3.5 percent.

Study on the Displacement of Crib Wall System (Crib Wall System 변위해석에 관한 연구)

  • Kim, Doo-Jun;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.201-209
    • /
    • 2002
  • Crib wall system is one of segmental crib type wall. Crib walls are constructed from separate members with no bonds between them other than frictional. The wall units are divide into two main types termed headers and stretchers. The headers run from the front to the back of the wall, perpendicular to the wall face. The cells are created by forming a grid by stacking individual wall components known as headers and stretchers. The body of wall consists of a system of open cell which are filled with a granular material. The design of crib retaining wall is usually based on conventional design methods derived from Rankine and Coulomb theory so that is able to resist the thrust of soil behind it, because it may be assumed that the wall acts as a rigid body. However, deformation characteristics of crib walls cannot be assumed as monolithic. They consist of individual members which have been stacked to creat a three dimensional grid. Therefore, the segmental grid allows relative movement between the individual member within the wall. The three dimensional flexible grid leads to stress distribution by interaction behavior between soil and crib wall. Therefore, in this study, in order to analysis the trends of deflection of crib wall system, new numerical models based on the results of Brandl's full scale test are introduced for design concept.

Analytical Evaluation on Soil Slope Reinforced by Pressure Grouted Protrusion Type Soil Nailing (가압식 돌기네일에 의해 보강된 토사 비탈면의 해석적 평가)

  • Hong, Cheor-Hwa;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.5-16
    • /
    • 2017
  • Soil nailing is the most general method to reinforce the slope by taking pullout and shear resistance force of the nail for stabilizing the slope. Domestic soil nailing design method considers only pullout resistance and does not consider the shear resistance sufficiently. In case of nail, the effect of tensile stress is dominant, but it is desirable to design by considering shear stress as well as tensile stress in case of slope where circle failures occur. Recently, studies on the shear resistance effect of nails have been carried out in the geotechnical field. However, many researches on the shear reinforcement effect of soil nailing have not been conducted until now. Most of the studies are about increasing pullout resistance by improving material, shape and construction method of nail. Therefore, it is necessary to the study on shear resistance of soil nailing and development of new methods to increase the shear force. In this study, large shear test and limit equilibrium analysis have been performed for a new soil nailing method to increase the shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar. The study results showed that shear resistance of protrusion type soil nailing increased compared to soil nailing and it is more effective when applied to the ground with large strength parameters.

Direct Inelastic Strut-Tie Model Using Secant Stiffness (할선강성을 이용한 직접 비탄성 스트럿-타이 모델)

  • Park Hong-Gun;Kim Yun-Gon;Eom Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.201-212
    • /
    • 2005
  • A new strut-tie model using secant stiffness, Direct Inelastic Strut-Tie Model, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of struts and ties because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were highlighted by the comparison with the traditional strut-tie model. The Direct Inelastic Strut-Tie Model, as an integrated analysis/design method, can directly address the design strategy intended by the engineer to prevent development of macro-cracks and brittle failure of struts. Since the proposed model can analyze the inelastic deformation, indeterminate strut-tie model can be used. Also, since the proposed model controls the local deformations of struts and ties, it can be used as a performance-based design method for various design criteria.

Experimental Study on Shear Strength of Steel Fiber Reinforced Concrete Beams (강섬유로 보강된 콘크리트 보의 전단강도에 관한 실험적 연구)

  • Kal, Kyoung-Wan;Kim, Kang-Su;Lee, Deuck-Hang;Hwang, Jin-Ha;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.160-170
    • /
    • 2010
  • Steel Fiber Reinforced Concrete (SFRC) beams has greater shear strength than typical reinforced concrete beams due to the high tensile strength of steel fibers. In this research, an experiment has been conducted to investigate the shear behavior of SFRC beams, and especially, the portion of shear resistance by uncracked compressive concrete section has been measured. Based on the test results in this study and 87 test data collected from literature, the accuracy of the existing equations for the estimation of shear strength has been evaluated. The shear strength of SFRC beams increased as more steel fibers were mixed. However, it is considered that the most efficient amount of steel fiber for enhancement of shear strength would be between 1% and 2% in that the specimen with 0.5% of steel fibers were abruptly failed after inclined cracking, and that the specimen with 2.0% of steel fibers showed a relatively low efficiency in increasing shear strength. The portion of shear resistance by the uncracked compressive concrete section was measured to be greater than 21%, and the equation proposed by Oh et al. provided the best accuracy on the estimation of shear strength of SFRC beams among the approaches evaluated in this study.

A Study on the Evaluation Method to Flexural-bonding Behavior of FRP-Rebar Concrete Member (FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동 평가방법에 관한 연구)

  • Choi, So-Yoeng;Choi, Myoung-Sung;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.149-156
    • /
    • 2021
  • FRP has been proposed to replace the steel as a reinforcement in the concrete structures for addressing the corrosion issue. However, FRP-Rebar does not behave in the same manner as steel because the properties of FRP are different. For example, FRP-Rebar has a high tensile strength, low stiffness, and linear elastic behavior which results in a difference bonding mechanism to transfer the load between the reinforcement and the surrounding concrete. Therefore, bonding behavior between FRP-Rebar and concrete has to be investigated using the bonding test. So, Pull-out test has been used to estimate bond behavior because it is simple. However, the results of pull-out test have a difference with flexural-boding behavior of FRP-Rebar concrete member. So, it is needed to evaluate the real fleuxral-bonding behavior. In this study, the evaluation method to flexural-bonding behavior of FRP-Rebar concrete member was reviewed and compared. It was found that the most accurate evaluation method for the fleuxral-bonding behavior of FRP-Rebar concrete member was splice beam test, however, the size and length of specimen have to increase than other test method and the design and analysis of splice beam is complex. Meanwhile, characteristics of concrete could be reflected by using arched beam test, unlike hinged beam test which is based on the ignored change of moment arm length in equilibrium equation. However, the possibility of shear failure exists before the flexural-bonding failure occur.

Evaluation for Ultimate Flexural Strength of Steel Composite Girder with High Strength Concrete (고강도 콘크리트 강합성 거더의 극한휨강도 실험 평가)

  • Kim, Woon Hak;Lee, Juwon;Lee, Seokmin
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.796-805
    • /
    • 2020
  • Purpose: A static loading test was performed to evaluate the ultimate flexural strength of a girder in which 80MPa high-strength concrete was synthesized on the compressive flange of the I-shape steel girder. Method: This test is designed and fabricated two types of specimens with different shear-connection specifications, and evaluated their ultimate flexural behavior until reaching the extreme event limit states. In addition, the ultimate strength was evaluated by comparing the test results and the results of the strain compatibility method. Result: By confirming the displacement within 0.02mm as a result of the relative slip measurement, it was verified that the two specimens secured perfect bonding. Therefore, the difference in the shear specification does not have a great effect on the stiffness, and if the specimens are completely synthesized, there is no difference in the behavior until it reaches the extreme-event limit states. Conclusion: The girder to be tested has a working load within the elastic range and meets the usability requirements for allowable deflection. Therefore, even if a part of the casing is subjected to the tensile force at the level of cracking, the deck will first reach the compression failure due to the role of the reinforcing bar.