• 제목/요약/키워드: 인장시험시편

Search Result 277, Processing Time 0.025 seconds

Structural Design of Liquid Rocket Thrust Chamber Regenerative Cooling Channel (액체로켓 연소기 재생냉각 채널 구조설계)

  • Ryu Chul-Sung;Chung Yong Hyun;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.134-138
    • /
    • 2005
  • The structural analysis and water pressure test of regenerative liquid rocket thrust chamber cooling channel specimens are performed at room temperature. material properties of copper alloy are obtained by uniaxial tension test at room temperature and used of elastic-plastic structural analysis. The plate type of cooling channel specimen are manufactured and performed water pressure test in order to confirm the analysis results. The differences between results of elastic-plastic analysis and that of water pressure test of cooling channel specimen are small and find that manufacturing process affect the structural stability of cooling channel very much because cooling channel thickness is small

  • PDF

The Mechanical Properties of CFRC under High Temperature (CFRC 복합재료의 기계적 고온특성)

  • Song, Gwan-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.258-265
    • /
    • 2001
  • Compression and bending test have been conducted to evaluate the mechanical performance of CFRC at several different temperature up to $2000^{\circ}C$ . Tools and several grips for the test at high temperature were designed to obtain mechanical properties of CFRP. A major cause of increasing strength according to increasing the density and the temperature were analyzed. SEM method was utilized to find out the damage and the fracture mechanism. The new simple equation for the L(span length)/h(beam height) of specimens and for the failure criterion on the 4 point bending were proposed.

  • PDF

The Variations of Tensile and Fatigue Properties in the Hydroforming Process (하이드로포밍 공정 전후의 인장 및 피로 물성 변화)

  • Oh, Chung-Seog;Kwon, Soon-Gue;Choi, Byung-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.111-118
    • /
    • 2007
  • Hydroforming is a cost-effective way of shaping malleable metals such as steel into lightweight, structurally stiff and strong pieces. With the increased use of the hydroformed components in automotive and aerospace industries, it is important to know the variations of the mechanical properties in the hydroforming process far the safe and durable design purposes. The principal goal of this paper is to suggest a procedure to evaluate the variations of tensile and fatigue properties before and after a hydroforming process. A miniature specimen, which is 0.2 mm thick and 2.3 mm wide, is devised and tested to measure local mechanical properties. The effects of specimen size, defects, surface roughness, and hydroforming on the tensile and fatigue behaviors are discussed.

Plastic η Eactors for J-Integral Testing of Double-Edge Cracked Tension(DE(T)) Plates (양측균열인장(DE(T)) 평판의 J-적분 시험을 위한 소성 η계수)

  • Son, Beom-Goo;Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2004
  • Detailed two-dimensional and three-dimensional finite element (FE) analyses of double-edge cracked tension (DE(T)) specimens are carried out to investigate the effect of the relative crack length and the thickness on experimental J testing schemes. Finite element analyses involve systematic variations of relevant parameters, such as the relative crack depth and plate width-to-thickness ratio. Furthermore, the strain hardening index of material is systematically varied, including perfectly plastic (non-hardening) cases. Based on FE results, a robust experimental J estimation scheme is proposed.

고무소재의 열응력

  • Gang, Sin-Yeong;Hong, Chang-Guk
    • Rubber Technology
    • /
    • v.11 no.1
    • /
    • pp.12-26
    • /
    • 2010
  • 각종 산업제품의 주요 부품으로 사용되고 있는 고무재료는 사용 중 온도변화에 의해 체적 또는 길이 변화를 수반할 수 있어 결과적으로 고무제품의 성능이나 효율이 영향을 받게 된다. 특히 고온에서 고무제품의 치수변화를 제한하거나 일정치수를 강제할 경우 열수축이나 열팽창에 의해 응력이 발생하게 된다. 따라서 온도 변화에 따른 열응력의 측정은 고무제품의 정밀성과 성능을 평가하는 중요한 수단을 제공한다. 본 연구에서는 고무소재의 열응력 측정을 위한 새로운 측정방법을 개발하였고 이와 관련 새로운 시험장치를 설계, 제작하였다. 고무시편에 일정 변형의 인장을 준 상태에서 가열하면 열응력이 발생한다. 이 때의 열응력은 고무분자 사슬들의 운동성에 기인하며 배향된 고무분자 사슬들이 열역학적으로 랜덤 사슬형태로 돌아가려는 엔트로피적 힘이다. 따라서 온도가 높을수록 그 수축력은 증가하게 된다. 또한 고무분자 사슬의 사전 변형이 증가하면 그 열응력은 증가한다. 이때 열응력은 측정시간이 지남에 따라 최대치에 도달한 후 완화되며 그 완화속도는 설정온도에 의해 영향을 받는다. 여기서는 온도변화에 따른 고무시편의 열응력 측정결과를 소개하고, 고무분자 사슬의 엔트로피 변화와 점탄성적 흐름, 그리고 가열에 따른 고무 시편의 팽창 또는 수축이 열응력에 미치는 영향 등을 논의하였다. 특히 천연고무와 SBR 고무시편의 열응력 차이를 분자사슬의 운동과 연관하여 검토하였고, 가교밀도와 가교시스템이 각각 다른 고무시편에 대해 열응력 발생과에 따른 상관관계를 고찰하였다. 또한 시편의 형태와 두께가 열응력 발생에 미치는 영향도 검토하였다. 충전 배합고무의 경우 열응력에 영향을 미치는 인자로 고무분자 사슬의 운동성과 가교밀도 외에 고무재료와 충전제 사이의 물리 화학적 상호작용도 매우 중요한 요소가 된다. 배합고무에서 충전제의 영향을 검토하기 위해 실리카와 카본블랙을 선택하였고 배합고무의 열응력을 각각 측정하여 이들의 보강효과가 열응력에 미치는 영향에 대해 논하였다.

  • PDF

Characterization of Crazing Behavior in Polystyrene (Polystyrene 의 Crazing 거동 특성)

  • Jeon, Dae-Jin;Kim, Seok-Ho;Kim, Wan-Young
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.142-152
    • /
    • 2004
  • Tensile tests of two types of injection-molded polystyrene(PS) samples have been carried out over a wide range of temperature and strain rates in order to characterize their crazing behaviors. Mechanical properties were affected by the formation of crazes as well as test variables. Below the brittle-ductile transition temperature, the tensile stress and the ultimate elongation increased with the molecular weight, strain rate, and with decreasing temperature while the number and average length of crazes also increase. The crazing stress increased with molecular weight, strain rate, and with decreasing temperature. However, the dependence was small compared to the tensile stress. The gap between crazing stress and tensile stress which represents time fur craze formation and growth increased with molecular weight, strain rate, and with decreasing temperature. Crazing was activated near the ${\beta}$-relaxation temperature; crazing stress abruptly decreased at this temperature. During the tensile test, the craze density changed exponentially with the applied stress. At the initial stage, crazes formed slowly. Once a certain number of craze formed, however, the craze density increased rapidly. Craze nucleation and growth occur simultaneously.

High Temperature Fatigue Life Prediction for Welded Joints of Recuperator Material for UAV (무인기용 레큐퍼레이터 소재의 용접부에 대한 고온 피로수명 예측)

  • Lee, Sang-rae;Kim, Jae-hwan;Kim, Jae-hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.111-117
    • /
    • 2019
  • An experimental study on the welding part of a heat transfer plate that constitutes the lightweight and high efficiency recuperator is presented in this paper. In particular, to find out the service life of the welded part, fatigue characteristics were determined through experiments. Experiments were carried out on two materials (STS347, AL20-25 + nb), which are selected as the material of the recuperator; further, the specimens were manufactured through the methods used for actual fabrication and the standards recommended by ASTM. To evaluate the mechanical properties of the specimens at room and high temperature, MTS-810 was used in a high-temperature furnace. The tensile test was carried out at room and high temperatures for each specimen. The fatigue test was carried out by setting the load ratio corresponding to 50%, 40%, 30%, 20%, and 10% of the tensile strength at the stress ratio of 0.1. Finally, the fatigue life characteristics obtained by the experiment were compared with the stresses owing to the load generated in the operating conditions of the recuperator, and the lifetime of the welds was evaluated to prepare for the operation time required by the UAV.

Mechanical Characteristics of Stainless Steel TP 304, TP 316 under Low Temperature Environment (저온 기계 재료용 TP 304, TP 316 소재의 저온거동 특성 평가)

  • Cho, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.125-130
    • /
    • 2017
  • Automotive materials and plant modules need to be prepared for freezing parts to operate in extreme areas such as Eastern Europe, Russia, and Canada. However, the only thing that has been done for ultra-qualifying materials for extremely low operating materials is that only the effects at low temperatures are conducted at room temperature, and the effects at low temperatures are only identified at low speeds. Therefore, this study examined the low-temperature characteristics of materials by conducting comparative tests on the mechanical properties of the room at the temperature and temperature of TP304 and TP316 materials, which are the most common materials.

An Experimental Study of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 실험적 연구)

  • Yoo, Seung-Woon;Kook, Moo-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • An experimental study of composite beam with perforated fiber reinforced polymer(FRP) plank as a permanent formwork and the tensile reinforcement was performed. A combined formwork and reinforcement system can facilitate rapid construction of concrete members since no conventional formwork is needed, which requires time consuming assembly and dismantling. In order for a smooth FRP plank to act compositely with the concrete, the surface of the FRP needs to be treated to increase its bond properties. Aggregates were bonded to the FRP plank using a commercially available epoxy and perforated web of plank. No additional flexural or shear reinforcement was provided in the beams. For comparison, two control specimens were tested. One control had no perforated hole in the web of FRP plank and the other had internal steel reinforcing bars instead of the FRP plank. The beams were loaded by central patch load to their ultimate capacity. This study demonstrates that the perforated FRP plank has the potential to serve as a permanent formwork and reinforcing for concrete beam.

Structural Analysis of Liquid Rocket Thrust Chamber Regenerative Cooling Channel at Room Temperature (액체로켓 연소기 재생냉각 채널 상온 구조해석)

  • Ryu Chul-Sung;Chung Yong-Hyun;Choi Hwan-Seok;Lee Dong-Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.39-47
    • /
    • 2005
  • The structural analysis and water pressure tests are performed for liquid rocket thrust chamber regenerative cooling channel specimens at room temperature condition. Material properties of copper alloy to be used in the elastic-plastic structural analysis are obtained by uniaxial tension test at room temperature. The plate-type cooling channel specimens are manufactured and performed water pressure test to verify the analysis results. The results of elastic-plastic structural analysis and water pressure test show resonable agreements though with minor differences and it is revealed that structural stability of regenerative cooling channel is highly affected by the manufacturing tolerances due to very thin cross-sectional thickness of the cooling channel.