• Title/Summary/Keyword: 인장경화

Search Result 321, Processing Time 0.021 seconds

Preparation and Characterization of Polyurethane Waterproof Coatings Containing Fly Ash

  • Lee, Sung-Il;Kim, Duk-Bae;Yang, Go-Su;Kim, Wan-Young;Byoun, Youn-Seop;Lee, Youn-Sik
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.243-250
    • /
    • 2003
  • Polyurethane waterproof (PW) coatings are increasingly demanded in Korea for repairing cracks on old building roofs and construction of many sporting facilities. Calcium carbonate, a common filler, is incorporated in PW compositions. In this study, PW coatings were prepared by substituting a part of calcium carbonate with fly ash. The maximum amounts of calcium carbonate which can be substituted by fly ash obtained in the cyclone and bag filter dust collectors were 20 and 10%, respectively. It was found that the curing rate of PWs ran be controlled by varying the amount of Pb-octoate catalyst. The elongations at break as well as tensile strength and tear strength of PW coatings containing fly ash could also be adjusted such that their values were comparable to those of a standard PW coating by varying relative amounts of some components. However, the amount of cadmium, mercury, and lead leached from PW coatings containing fly ash obtained from the bag filter collector exceeded the respective allowed upper limits, mainly due to the initial high contents of them in the fly ash. On the other hand, PW coatings containing fly ash obtained from the cyclone collector exhibited better mechanical properties and did not release any significant amounts of the heavy metals. Thus, it was concluded that PW coatings containing fly ash can be utilized for practical applications as long as an appropriate fly ash is used.

Properties of Inorganic Adhesives according to Phosphate Type and Borax Ratio (인산염 종류와 붕사 첨가율에 따른 무기접착재의 특성)

  • Song, Ha-Young;Lim, Jeong-Jun;Khil, Bae-Su;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.289-297
    • /
    • 2019
  • Epoxy resin adhesives are currently used as adhesives in buildings. Epoxy resin adhesives, which are organic materials, generate harmful substances when producing adhesives, and toxic substances are high in the residential space after installation. In addition, a large amount of carbon monoxide generated from organic materials in the case of a building fire leads to personal injury. This study evaluates the feasibility of inorganic adhesives using pure inorganic materials such as magnesia, phosphate, and borax as inorganic adhesives to replace existing organic adhesives. As a result of the experiment on the selection of adequate phosphate and the characteristics of the addition rate of borax used as a retarder, the potassium phosphate monobasic was obtained as a suitable phosphate and the characteristics according to the borax addition rate were compared with the quality standard of KS F 4923 The hardening shrinkage and heat change rate satisfied the quality standards. The tensile strength was satisfactory when the borax addition rate was 4% or more, but the adhesive strength did not meet the quality standards. Further studies are needed to improve adhesion strength.

Vibrational Properties of High Damping Polymer Concrete with Hybrid Damper (복합구조 댐퍼를 적용한 고 감쇠 폴리머 콘크리트의 진동 특성에 관한 연구)

  • Kim, Jeong-Jin;Choi, Kyung-Suk;We, Joon-Woo;Seok, Won-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.135-142
    • /
    • 2020
  • In the case of a concrete structure, vibration problems occur under various conditions because of its low damping performance. To solve this problem, a study on the high damping performance of the polymer concrete with hybrid damper has recently been increased. Since water is not used in polymer concrete, the curing time is short. Also, the physical properties and dynamic properties of polymer concrete are quite excellent. So polymer concrete is widely expected to be used for structural materials. The hybrid damper is the structural system that consists of steel balls and viscous fluid inside the pipe which is embedded in polymer concrete. It can reduce the structural vibrations through the energy dissipation mechanism of viscous fluid and steel balls. In this study, the physical and dynamic properties of polymer concrete with hybrid damper were compared with ordinary concrete. As a result, the elasticity coefficient and the strength of the polymer concrete with hybrid damper were so much excellent. In particular, the tensile strength was 6.5 to 10 times higher than ordinary concrete. The frequency response function and damping ratio were also compared. As a result, the dynamic Stiffness of the polymer concrete was 25% greater than that of ordinary concrete. The damping ratio of the polymer concrete was approximately 3 times higher than that of ordinary concrete. Although the dynamic stiffness of the hybrid damper showed similar tendency, the damping ratio was 3.5 times higher than that of ordinary concrete. Therefore, the polymer concrete with hybrid damper was superior to ordinary concrete.

Laser Transmission Welding of Flexible Substrates and Evaluation of the Mechanical Properties (플렉서블 기판의 레이저 투과 용접 및 기계적 특성 평가)

  • Ko, Myeong-Jun;Sohn, Minjeong;Kim, Min-Su;Na, Jeehoo;Ju, Byeong-Kwon;Park, Young-Bae;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.113-119
    • /
    • 2022
  • In order to improve the mechanical reliability of next-generation electronic devices including flexible, wearable devices, a high level of mechanical reliability is required at various flexible joints. Organic adhesive materials such as epoxy for bonding existing polymer substrates inevitably have an increase in the thickness of the joint and involve problems of thermodynamic damage due to repeated deformation and high temperature hardening. Therefore, it is required to develop a low-temperature bonding process to minimize the thickness of the joint and prevent thermal damage for flexible bonding. This study developed flexible laser transmission welding (f-LTW) that allows bonding of flexible substrates with flexibility, robustness, and low thermal damage. Carbon nanotube (CNT) is thin-film coated on a flexible substrate to reduce the thickness of the joint, and a local melt bonding process on the surface of a polymer substrate by heating a CNT dispersion beam laser has been developed. The laser process conditions were constructed to minimize the thermal damage of the substrate and the mechanism of forming a CNT junction with the polymer substrate. In addition, lap shear adhesion test, peel test, and repeated bending experiment were conducted to evaluate the strength and flexibility of the flexible bonding joint.

Preparation and Application of Rehmannia Glutinosa Extract Incorporated Functional Chitosan Based Biomaterials (지황 추출물 첨가 chitosan 기반 기능성 바이오 소재 제조 및 응용)

  • Lee, Si-Yeon;Kim, Kyeong-Jung;Kim, Youn-Sop;Yoon, Soon-Do
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.195-201
    • /
    • 2022
  • The main objective of this work is to prepare Rehmannia glutinosa extract (RE) incorporated functional chitosan (CH) based biomaterials and evaluate their physical properties, RE release properties, inhibitory effect of melanogenesis, and antioxidant and elastase inhibitory activities. RE incorporated CH based biomaterials were synthesized by a casting method and UV curing process. The surface and cross sections of prepared biomaterials were characterized by a field emission scanning electron microscope (FE-SEM). The physical properties such as tensile strength and elongation at break were also investigated. To apply the transdermal drug delivery system, RE release properties were examined with pH 4.5, 5.5, and 6.5 buffer solutions and artificial skin test at 36.5 ℃. Results indicated that RE release of RE incorporated biomaterials with/without the addition of plasticizers [glycerol (GL) and citric acid (CA)] at pH 6.5 was about 1.10 times higher than that of at pH 4.5. In addition, results of the artificial skin test verified that RE was released constantly for 6 h. To verify the applicability of the prepared biomaterials, tyrosinase, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and elastase assays were investigated. Results indicated that RE incorporated biomaterials added CA exhibited tyrosinase activation, DPPH radical scavenging activity rate, and elastase activation of 45.12, 89.40, and 59.94%, respectively.

Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams (고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리)

  • Park, Chang Hee;Lee, Cheol Ho;Han, Kyu Hong;Kim, Jin Ho;Lee, Seung Eun;Ha, Tae Hyu;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2013
  • In this study, lateral-torsional buckling (LTB) strength of high-strength H-beams built up from 800MPa tensile-strength steel was experimentally and analytically evaluated according to current lateral stability provisions (KBC 2009, AISC-LRFD 2010). The motivation was to evaluate whether or not current LTB provisions, which were originally developed for ordinary steel with different stress-strain characteristics, are still applicable to high-strength steel. Two sets of compact-section specimens with relatively low (Set A) or high (Set B) warping stiffness were prepared and tested under uniform moment loading. Laterally unbraced lengths of the test specimens were controlled such that inelastic LTB could be induced. All specimens exhibited LTB strength exceeding the minimum limit required by current provisions by a sufficient margin. Moreover, some specimen in Set A reached a rotation capacity required for plastic design, although its laterally unbraced length belonged to the inelastic LTB range. All the test results indicated that extrapolation of current provisions to high-strength steel is conservative. In order to further analyze the test results, the relationship between inelastic moment and laterally unbraced length was also derived in explicit form for both ordinary- and high-strength steel based on the effective tangent modulus of inelastic section. The analytical relationship derived again showed that extrapolation of current laterally unbraced length limit leads to a conservative design in the case of high-strength steel and that the laterally unbraced length to control the inelastic LTB behavior of high-strength steel beam should be specified by including its unique post-yield strain-hardening characteristics.

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.

THE EFFECT OF CANAL FILLING SEALER TO RESIN CEMENT IN POST CEMENTATION (근관충전용 sealer의 성분이 포스트 세멘트시 레진 세멘트에 미치는 영향)

  • Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • The purpose of this study was to evaluate the effect of the canal filling sealer to resin cement When posts were cemented in the endodontically treated teeth, 86 incisors were used. The coronal portion of the teeth were removed at the cemento-enamel junction, every tooth was done treatment of canal. And the teeth was divided was into 12 groups. G : I a n : 7 Treatment : Z.P.C (1 day after Z.O.E. sealer) G : I b n : 7 Treatment : All-Bond (3 day after sealer) G : II a n : 8 Treatemt : Z.P.C (3 day after sealer) G : II b n : 7 Treatemt : All-Bond (3 day after sealer) G : III a n : 8 Treatemt : Z.P.C (7 day after sealer) G : III b n : 8 Treatemt : All-Bond (7 day after sealer) G : IV a n : 7 Treatemt : Z.P.C (1 day after Apexit sealer) G : IV b n : 7 Treatemt : All-Bond (1 day after sealer) G : V a n : 7 Treatemt : Z.P.C (3 day after sealer) G : V b n : 7 Treatemt : All-Bond (3 day after sealer) G : VI a n : 7 Treatemt : Z.P.C (7 day after sealer) G : VI a n : 7 Treatemt : All-Bond (7 day after sealer) Ready made stainless steel Para-post(PD-K-3) was cemented with Z.P.C. in subgroup a, and cemented with All-Bond & composite resin cement in subgroup b to depth 7mm. After 5 days at cementation of post, teeth with cemented posts were mounted on a retention jig and the failure loads of the specimens were measured by an Instron Universal Testing Machine. The results were as follows. 1. The results of failure loads were $15.5{\pm}7.1kg$ in group I b, $21.6{\pm}5.4kg$ in group II b and $20.1{\pm}18.1kg$ in group III b, and there was no statistically significant , difference between each group(p>0.05). 2. The results of failure loads were $19.0{\pm}6.7kg$ in group IV b, $17.3{\pm}6.5kg$ in group V b.and $18.9{\pm}7.9kg$ in group VI b and there was no significant difference between each other(p>0.05). 3. In same condition, the failure load of subgroup a was largely higher the subgroup b. But there was no significant difference between each other(p>0.05).

  • PDF

Therapeutic Effect of Hydrocolloid Membrane Containing Liriope platyphylla Extracts on the Burn Wounds of SD Rats (맥문동 혼합 하이드로콜로이드막의 제조 및 화상치료 효능평가)

  • Lee, Eun Hae;Go, Jun;Kim, Ji Eun;Koh, Eun Kyoung;Song, Sung Hwa;Sung, Ji Eun;Park, Chan Kyu;Lee, Hyeon Ah;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.523-532
    • /
    • 2015
  • A variety of previous pharmacological studies have suggested Liriope platyphylla (L. platyphylla) may exert beneficial biological effects on inflammation, diabetes, neurodegenerative disorder, obesity, constipation, and atopic dermatitis. In addition, hydrocolloid membranes (HCMs) have attracted attention in dermatological care, including in the treatment of scleroderma skin ulcers, cutaneous ulcers, permanent tympanic membrane perforations, pressure sores, and decubitus ulcers in the elderly. To investigate the therapeutic effects of HCM containing an aqueous extract of L. platyphylla (HCM-LP) on second-degree burn wounds, their physico-chemical properties were analyzed and the therapeutic effects were observed in SD rats after treatment with HCM-LP for 14 days. Significant declines in tensile strength (38.4%) and absorptiveness (46.3%), as well as an increase in surface roughness (38.1%) were detected in HCM-LP compared with that of HCM. In SD rats with burned skin, the wound diameter was shorter in the HCM-LP treated group than in the GZ group on post-surgical day 14, while the significant improvements in scar tissue reduction, epithelium regeneration, angiogenesis, and extracellular matrix deposition were observed in the HCM-LP-treated group during all experimental periods. Overall, these results suggest HCM-LP may accelerate the process of healing the burn injury skin of SD rats through the regulation of angiogenesis and connective tissue formation.

The Influence of Admixture of Lignosulfonic Acid Type on the Strength of Mortar (Lignosulfonic Acid계(系) 감수제(減水劑)가 모르터의 강도(强度)에 미치는 영향(影響))

  • Kim, Han Young;Kim, Seong Wan
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.75-85
    • /
    • 1985
  • This study is intended to find out the influence of Lignosulfonic Acid Type Admixture on compressive, tensile, flexural strength and dispersing action of mortar, and fixation of by-product of pulp industry. 1. The more Pozzolith-84 is added, the larger flow value is. The admixture of lignosulfonic acid type adhere to cement particles and the surface potential of particles is generated. On account of the repulsion among the cement particles, they are dispersed and the mortar get workable, so the production cost of precast product is curtailed and the amount of cement is reduced in a certain workability of mortar. 2. The strength of mortar is greater than plain mortar when P/C added is 0.2 and 0.4%. As time passed the potential energy is reduced and the distance of particles which lignosulfonic acid adhered to get near according as the amount of adhesion is increased. The setting and hardening reaction of morter is occurred in close state, so the strength of mortar is increased a little. The strength of mortar is less than plain mortar when amount P/C added is 0.8%. Pozzolith-84 is mainly composed of lignosulfonic acid and lignin does not influence the hardening of mortar, therefore the remained $SO_3$, $SO_3H$ are the reason of decrease of strength. 3. There is high significance between specific gravity and compressive strength. The larger specific gravity is, the more compressive strength is increased. There is high significance between 7 day's strength and 28 day's strength. The larger compressive strength is, the more tensile and flexural strength are increased. 4. Since Pozzolith-84 is a by-product of pulp industry, by using the Pozzolith-84 admixture the concreate quality is improved. The water pollusion is reduced according to fix by-products in concrete structure.

  • PDF