• 제목/요약/키워드: 인식 모델

검색결과 4,446건 처리시간 0.057초

PCA를 이용한 3차원 얼굴인식 모델에 관한 연구 : 모델 구조 비교연구 및 해석 (A Study On Three-dimensional Face Recognition Model Using PCA : Comparative Studies and Analysis of Model Architectures)

  • 박찬준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1373-1374
    • /
    • 2015
  • 본 논문은 복잡한 비선형 모델링 방법인 다항식 기반 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 벡터공간에서 임의의 비선형 경계를 찾아 두 개의 집합을 분류하는 방법으로 주어진 조건하에서 수학적으로 최적의 해를 찾는 SVM(Support Vector Machine)를 사용하여 3차원 얼굴인식 모델을 설계하고 두 모델의 3차원 얼굴 인식률을 비교한다. 3D스캐너를 통해 3차원 얼굴형상을 획득하고 획득한 영상을 전처리 과정에서 포인트 클라우드 정합과 포즈보상을 수행한다. 포즈보상 통해 정면으로 재배치한 영상을 Multiple Point Signature기법을 이용하여 얼굴의 깊이 데이터를 추출한다. 추출된 깊이 데이터를 RBFNN과 SVM의 입력패턴과 출력으로 선정하여 모델을 설계한다. 각 모델의 효율적인 학습을 위해 PCA 알고리즘을 이용하여 고차원의 패턴을 축소하여 모델을 설계하고 인식 성능을 비교 및 확인한다.

  • PDF

정보검색 기법과 동적 보간 계수를 이용한 N-gram 적응 (N-gram Adaptation using Information Retrieval and Dynamic Interpolation Coefficient)

  • 최준기;오영환
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 추계 학술대회 발표논문집
    • /
    • pp.107-112
    • /
    • 2005
  • 연속음성인식을 위한 언어모델 적응기법은 특정 영역의 정보만을 담고 있는 적응 코퍼스를 이용해 작성한 적응 언어모델과 기본 언어모델을 병합하는 방법이다. 본 논문에서는 추가되는 자료 없이 인식 시스템이보유하고 있는 코퍼스만을 사용하여 적응 코퍼스를 구축하기 위해 언어모델에 기반한 정보검색 기법을 사영하였다. 검색된 적응 코퍼스로 작성된 적응 언어모델과 기본 언어모델과의 병합을 위해 본 논문에서는 입력음성을 분할하여 각 구간에 최적인 동적 보간 계수를 구하는 방법을 제안하였다. 제안된 적응 코퍼스를 구하는 방법과 동적 보간 계수는 기본 언어모델 대비절대 3.6%의 한국어 방송뉴스 인식 성능 향상을 보여주었으며 기존의 검증자료를 이용한 정적 보간 계수에 비해 상대 13.6%의 한국어 방송뉴스 인식 성능 향상을 보여 주었다.

  • PDF

형상 형성 제어를 이용한 어휘인식 공유 모델의 가우시안 최적화 (Gaussian Optimization of Vocabulary Recognition Clustering Model using Configuration Thread Control)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.127-134
    • /
    • 2010
  • 연속 어휘 인식 확률 분포의 공유 방법에서는 사용될 모델 파라미터들의 초기 추정치를 생성하기 위한 각 문맥들에 대한 음소 데이터가 반드시 필요하지만 이들 음소 데이터에 대한 모델을 구성할 수 없는 단점으로 가우시안 모델의 정확성을 확보하지 못한다는 단점이 있다. 이를 개선하기 위하여 확률 분포의 혼합 가우시안 모델을 최적화하고, 음소 단위로 데이터를 탐색을 지원하는 형상 형성 시스템을 제안한다. 본 논문의 형상 형성 시스템은 확장 facet 분류를 이용하여 사용자에게 음소 단위의 형상 형성 정보를 제공하므로 가우시안 모델의 정확성을 제공한다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 98.31%, 어휘 독립 인식률은 97.63%의 인식률을 나타내었다.

시변 잡음에 강인한 음성 인식을 위한 PCA 기반의 Variational 모델 생성 기법 (PCA-based Variational Model Composition Method for Roust Speech Recognition with Time-Varying Background Noise)

  • 김우일
    • 한국정보통신학회논문지
    • /
    • 제17권12호
    • /
    • pp.2793-2799
    • /
    • 2013
  • 본 논문에서는 시간에 따라 변하는 잡음 환경에 강인한 음성 인식을 위해 효과적인 특징 보상 기법을 제안한다. 제안하는 기법에서는 기존의 Variational 모델 생성 기법의 모델 정확도를 향상시키고자 PCA를 도입한다. 제안된 기법은 다중 모델을 사용하는 PCGMM 기반의 특징 보상에 적용된다. 실험 결과는 제안한 PCA 기반의 Variational 모델 생성 기법이 배경 음악 환경의 다양한 SNR 조건에서 기존의 전처리 기법에 비하여 음성 인식 성능을 향상 시키는데 우수함을 입증한다. 제안한 모델 생성 기법이 기존의 Variational 모델 생성 방법에 비해 배경 음악 환경에서 평균 12.14%의 상대적 인식 성능 향상률을 나타낸다.

Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식 (Named-entity Recognition Using Bidirectional LSTM CRFs)

  • 송치윤;양성민;강상우
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF

음성 인식에서 훈련 및 인식 과정에 사용되는 대상 어휘의 차이에 대한 음향 모델의 성능 평가 (Performance Evaluation of Acoustic Models According to Differences between Vocabularies in Training and Test Phases of Speech Recognition)

  • 김회린;이항섭;권오욱
    • 한국음향학회지
    • /
    • 제17권7호
    • /
    • pp.22-27
    • /
    • 1998
  • 본 논문에서는 ETRI에서 개발한 가변 어휘 음성 인식기의 어휘 독립 음향 모델링 방법을 기술하고, 이 모델의 어휘 종속, 어휘 독립 및 어휘적응 성능을 평가하기 위하여 다 양한 고립단어 및 연속음성 DB에 대하여 실험한 결과를 분석하였다. 평가를 위하여 사용한 음성 DB로는 고립단어 음성으로 POW(Phonetically Optimized Words) 3848, PBW(Phonetically Balanced Words) 445, PBW 452, 호텔예약 244 단어, 게임 제어용 단어 등이며, 연속음성으로 일반 문장 음성 및 연속 숫자음을 이용하였다. 성능 분석 결과 40개 음소 모델만으로도 비교적 높은 인식률을 보여 주었지만, 어휘독립의 경우는 어휘종속에 비 하여 성능이 크게 낮았고, 특히 대상 어휘가 숫자음, 알파벳, 연속음 등의 경우에는 POW 데이터나 PBW 데이터만 가지고는 우수한 가변 어휘 음성 인식기를 구현하기에 한계가 있 음을 알 수 있다. 또한, 훈련 데이터의 어휘와 평가데이터의 어휘가 비슷할 경우에는 변이음 모델을 사용하면 음소 모델만을 사용할 경우에 비하여 그 성능이 우수하였지만, 일반적인 어휘독립의 상황에서는 효과가 별로 없음을 알 수 있었다.

  • PDF

Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식 (Named-entity Recognition Using Bidirectional LSTM CRFs)

  • 송치윤;양성민;강상우
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는 것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF

영상 감시 시스템에 적용 가능한 의도기반 상황인식 모델에 관한 연구 (A Study on the Intention-based Context-aware Model for Video Surveillance System)

  • 김형년;박지형
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.235-237
    • /
    • 2006
  • 상황인식 시스템에 포함되는 멀티 모달 센서의 활용과 장기간 축적된 센서정보(long-term value)를 상황정보로 어떻게 이용할 것인지에 대한 연구가 최근 활발히 진행되고 있다. 상황인식 시스템은 센서가 교체, 추가 및 제거되는 것과 관계없이 상황인식 모델의 재사용이 가능해야 하며, 센서정보와 상황정보는 프로세스 실행에 활용될 수 있어야 한다. 따라서, 본 논문에서는 센서정보와 상황정보를 노드로 구성하여 이들의 상호작용에 의해 프로세스의 실행을 결정하는 베이지안 네트워크로 표현된 상황인식 모델을 제안한다. 이 모델은 시스템의 역할이나 시스템을 구성한 의도가 센서의 교체나 추가, 제거에 관계없이 유지되는 점을 이용하여 이들간의 관계를 베이지안 네트워크로 나타낸다. 그리고 실험적으로 구현된 위치 기반 영상 감시 시스템에 적용하여 해당 모델의 유효성을 확인한다.

  • PDF

연속 음성 인식 향상을 위해 LMS 알고리즘을 이용한 CHMM 모델링 (CHMM Modeling using LMS Algorithm for Continuous Speech Recognition Improvement)

  • 안찬식;오상엽
    • 디지털융복합연구
    • /
    • 제10권11호
    • /
    • pp.377-382
    • /
    • 2012
  • 본 논문은 반향 제거 평균 예측 LMS 알고리즘을 이용하여 반향 잡음에 강인한 연속 음성 인식 모델인 CHMM 모델을 구성하는 방법을 제안하였다. 변화하는 반향 잡음에 적응하고 연속 음성 인식 성능 향상을 위한 반향 잡음 제거 평균 예측 LMS 알고리즘을 이용하여 CHMM 모델을 구성하였다. 제안한 알고리즘에 의해 구성된 CHMM 모델에 대하여 연속 인식 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 음성의 SNR은 평균 1.93dB이 향상되었고 연속 음성의 인식률은 2.1% 향상되었다.

전화망에서의 한국어 연속숫자음 인식 실험 (The Recognition Experiment of Korean Connected Digit in the Telephone Network)

  • 강점자;김갑기
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.167-170
    • /
    • 2002
  • 본 논문에서는 전화망 환경에서의 한국어 숫자음 인식을 위한 특징 파라미터 추출, 음향 모델링 방식을 결정하기 위하여 HTK 툴을 사용한 4 연숫자음 인식실험 결과를 기술한다. 또한, 실험 결과를 토대로 빈번하게 발생하는 숫자음에 대해서 오류율을 분석하였다. 숫자 모델로는 left context biword 모델과 triword 모델을 사용하였으며, 상태수와 mixture 수를 바꾸어 인식 실험을 수행한 결과, triword 모델이 biword 모델보다 인식율이 높은 것으로 나타났으며, substitution 에러율은 " 이<->" 에서 가장 높은 에러가 발생하는 결과를 얻을 수 있다.

  • PDF