• Title/Summary/Keyword: 인식의 오류

Search Result 924, Processing Time 0.023 seconds

Categorization and Analysis of Error Types in the Korean Speech Recognition System (한국어 음성 인식 시스템의 오류 유형 분류 및 분석)

  • Son, Junyoung;Park Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.144-151
    • /
    • 2021
  • 딥러닝의 등장으로 자동 음성 인식 (Automatic Speech Recognition) 기술은 인간과 컴퓨터의 상호작용을 위한 가장 중요한 요소로 자리 잡았다. 그러나 아직까지 유사 발음 오류, 띄어쓰기 오류, 기호부착 오류 등과 같이 해결해야할 난제들이 많이 존재하며 오류 유형에 대한 명확한 기준 정립이 되고 있지 않은 실정이다. 이에 본 논문은 음성 인식 시스템의 오류 유형 분류 기준을 한국어에 특화되게 설계하였으며 이를 다양한 상용화 음성 인식 시스템을 바탕으로 질적 분석 및 오류 분류를 진행하였다. 실험의 경우 도메인과 어투에 따른 분석을 각각 진행하였으며 이를 통해 각 상용화 시스템별 강건한 부분과 약점인 부분을 파악할 수 있었다.

  • PDF

Guided Sequence Generation using Trie-based Dictionary for ASR Error Correction (음성 인식 오류 수정을 위한 Trie 기반 사전을 이용한 Guided Sequence Generation)

  • Choi, Junhwi;Ryu, Seonghan;Yu, Hwanjo;Lee, Gary Geunbae
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.211-216
    • /
    • 2016
  • 현재 나오는 많은 음성 인식기가 대체로 높은 정확도를 가지고 있더라도, 음성 인식 오류는 여전히 빈번하게 발생한다. 음성 인식 오류는 관련 어플리케이션에 있어 많은 오동작의 원인이 되므로, 음성 인식 오류는 고쳐져야 한다. 본 논문에서는 Trie 기반 사전을 이용한 Guided Sequence Generation을 제안한다. 제안하는 모델은 목표 단어와 그 단어의 문맥을 Encoding하고, 그로부터 단어를 Character 단위로 Decoding하며 단어를 Generation한다. 올바른 단어를 생성하기 위하여, Generation 시에 Trie 기반 사전을 통해 유도한다. 실험을 위해 모델은 영어 TV 가이드 도메인의 말뭉치의 음성 인식 오류를 단순히 Simulation하여 만들어진 말뭉치로부터 훈련되고, 같은 도메인의 음성 인식 문장과 결과로 이루어진 병렬 말뭉치에서 성능을 평가하였다. Guided Generation은 Unguided Generation에 비해 14.9% 정도의 오류를 줄였다.

  • PDF

Guided Sequence Generation using Trie-based Dictionary for ASR Error Correction (음성 인식 오류 수정을 위한 Trie 기반 사전을 이용한 Guided Sequence Generation)

  • Choi, Junhwi;Ryu, Seonghan;Yu, Hwanjo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.211-216
    • /
    • 2016
  • 현재 나오는 많은 음성 인식기가 대체로 높은 정확도를 가지고 있더라도, 음성 인식 오류는 여전히 빈번하게 발생한다. 음성 인식 오류는 관련 어플리케이션에 있어 많은 오동작의 원인이 되므로, 음성 인식 오류는 고쳐져야 한다. 본 논문에서는 Trie 기반 사전을 이용한 Guided Sequence Generation을 제안한다. 제안하는 모델은 목표 단어와 그 단어의 문맥을 Encoding하고, 그로부터 단어를 Character 단위로 Decoding하며 단어를 Generation한다. 올바른 단어를 생성하기 위하여, Generation 시에 Trie 기반 사전을 통해 유도한다. 실험을 위해 모델은 영어 TV 가이드 도메인의 말뭉치의 음성 인식 오류를 단순히 Simulation하여 만들어진 말뭉치로부터 훈련되고, 같은 도메인의 음성 인식 문장과 결과로 이루어진 병렬 말뭉치에서 성능을 평가하였다. Guided Generation은 Unguided Generation에 비해 14.9% 정도의 오류를 줄였다.

  • PDF

Hybrid ASR Error Correction Using Word Sequence Pattern and Recurrent Neural Network (단어열 패턴 매칭과 Recurrent Neural Network를 이용한 하이브리드 음성 인식 오류 수정 방법)

  • Choi, Junhwi;Ryu, Seonghan;Lee, Kyusong;Park, Seonyeong;Yu, Hwanjo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.129-132
    • /
    • 2015
  • 본 논문에서는 단어열 패턴과 리커런트 신경망을 이용한 하이브리드 음성 인식 오류 수정 방법을 제안한다. 음성 인식 결과 문장에서 음성 인식 오류 단어가 발견되었을 경우에 첫째로 단어열 패턴과 그 패턴의 발음열 점수를 통해 1차적 수정을 하고 적절한 패턴을 찾지 못하였을 경우 음절단위로 구성된 Recurrent Neural Network를 통해 단어를 음절단위로 생성하여 2차적으로 오류를 수정한다. 해당 방법론을 한국어로 된 음성 인식 오류와 그 정답 문장으로 구성된 TV 가이드 영역 말뭉치를 바탕으로 성능을 평가하였고, 기존의 단순 단어열 패턴 기반의 음성 인식 오류 수정보다 성능이 향상되었음을 볼 수 있었다. 이 방법론은 음성 인식 오류와 정답의 말뭉치가 필요 없이 옳은 문장으로만 구성된 일반 말뭉치만으로 훈련이 가능하여, 음성 인식 엔진에 의존적이지 않는 강점이 있다.

  • PDF

Detection of Soft 404 Errors based on Visual Characteristics of Web Page (웹 문서의 형태적 특징 인식에 기반한 SOFT 404 오류 판별)

  • Im, Jaehyeong;Choo, Seung-Hwa
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.382-385
    • /
    • 2018
  • Dead Link의 노출 최소화는 웹 검색 서비스의 품질 유지에 있어 매우 중요하다. 따라서 색인 내 Soft 404 오류의 정확한 판별은 필수적이지만, 리다이렉션 정보에 의존하거나 텍스트 혹은 HTML 자질 만을 고려하는 기존 방법의 활용만으로는 판별 가능한 Soft 404 오류의 유형이 한정될 수 있다는 문제가 있다. 이에 본 연구에서는 보다 범용성이 높은 Soft 404 오류 판별 기술의 개발을 위해, 404 오류 안내 페이지 고유의 형태적 특성을 오류 판별에 사용할 것을 제안한다. 제안 방법은 오류 안내 문서의 형태적 특성을 이미지 인식 모형에 기반해 학습한 후 이를 Soft 404 오류 판별에 사용하며, 리다이렉션 등 특정 정보에 의존하는 기존 방법에 비해 보다 폭넓게 적용 가능하다는 장점이 있다. 실험에서 제안 방법은 87.6%의 정확률과 92.7%의 재현율을 기록하는 등 높은 인식 성능을 보였다.

  • PDF

Speech Recognition Error Compensation using MFCC and LPC Feature Extraction Method (MFCC와 LPC 특징 추출 방법을 이용한 음성 인식 오류 보정)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.137-142
    • /
    • 2013
  • Speech recognition system is input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Therefore, in this paper, we propose a speech recognition error correction method using phoneme similarity rate and reliability measures based on the characteristics of the phonemes. Phonemes similarity rate was phoneme of learning model obtained used MFCC and LPC feature extraction method, measured with reliability rate. Minimize the error to be unrecognized by measuring the rate of similar phonemes and reliability. Turned out to error speech in the process of speech recognition was error compensation performed. In this paper, the result of applying the proposed system showed a recognition rate of 98.3%, error compensation rate 95.5% in the speech recognition.

Speech Recognition Error Detection Using Deep Learning (딥 러닝을 이용한 음성인식 오류 판별 방법)

  • Kim, Hyun-Ho;Yun, Seung;Kim, Sang-Hun
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.157-162
    • /
    • 2015
  • 자동통역(Speech-to-speech translation)의 최우선 단계인 음성인식과정에서 발생한 오류문장은 대부분 비문법적 구조를 갖거나 의미를 이해할 수 없는 문장들이다. 이러한 문장으로 자동번역을 할 경우 심각한 통역오류가 발생하게 되어 이에 대한 개선이 반드시 필요한 상황이다. 이에 본 논문에서는 음성인식 오류문장이 정상적인 인식문장에 비해 비문법적이거나 무의미하다는 특징을 이용하여 DNN(Deep Neural Network) 기반 음성인식오류 판별기를 구현하였으며 84.20%의 오류문장 분류성능결과를 얻었다.

  • PDF

Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction (음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.83-90
    • /
    • 2010
  • In vocabulary recognition system has reduce recognition rate unrecognized error cause of similar phoneme recognition and due to provided inaccurate vocabulary. Input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Also can't feature extraction properly when phoneme recognition is similar phoneme recognition. In this paper propose vocabulary recognition post-process error correction system using phoneme likelihood based on phoneme feature. Phoneme likelihood is monophone training phoneme data by find out using MFCC and LPC feature extraction method. Similar phoneme is induced able to recognition of accurate phoneme due to inaccurate vocabulary provided unrecognized reduced error rate. Find out error correction using phoneme likelihood and confidence when vocabulary recognition perform error correction for error proved vocabulary. System performance comparison as a result of recognition improve represent MFCC 7.5%, LPC 5.3% by system using error pattern and system using semantic.

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

A Study on the improvement of English writing by applying error indication function in word processor (워드프로세서의 영어문장 어법오류 인식개선을 통한 영어구문작성 향상방안에 대한 연구)

  • Yi, Jae-Il
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.285-290
    • /
    • 2020
  • This study focus on improving the text language proficiency regarding users' written text. In order to tone up accuracy improvement in writing, Computer Assisted Language Learning(CALL) can be primarily used as one of the most efficient tools. This study proposes a English Grammar Checking Application that can improve the accuracy over the current applications. The proposed system is capable of defining the difference between a Noun and a Noun Phrase which is critical in improving grammar accuracy for those who use Englilsh as a foreign language in English writing.