• Title/Summary/Keyword: 인스턴스 선택

Search Result 16, Processing Time 0.02 seconds

Abnormaly Intrusion Detection Using Instance Based Learning (인스턴스 기반의 학습을 이용한 비정상 행위 탐지)

  • Hong, Seong-Kil;Won, Il-Yong;Song, Doo-Heon;Lee, Chang-Hun
    • Annual Conference of KIPS
    • /
    • 2003.05c
    • /
    • pp.2001-2004
    • /
    • 2003
  • 비정상 행위의 탐지를 위한 침입탐지 시스템의 성능을 좌우하는 가장 큰 요인들은 패킷의 손실없는 수집과 해당 도메인에 알맞은 분류 기법이라 할 수 있다. 본 논문에서는 기존의 탐지엔진에 적용된 알고리즘의 부류에서 벗어나 Instance 기반의 알고리즘인 IBL(Instance Based Learning)을 선택하여 학습시간의 단축과 패턴생성에 따른 분류근거의 명확성을 고려였다. 또한, 기존 IBL에 포함되어 있는 Symbolic value 의 거리계산 방식에서 네트워크의 로우 데이터인 패킷을 처리하는데 따르는 문제를 해결하기 위해 VDM(Value Difference Matrix)을 사용함으로써 탐지률을 향상시킬 수 있었다. Symbolic value간의 거리계산에 따른 성능향상의 정도를 알아보기 위해 VDM 적용 유무에 따른 실험결과와 탐지엔진에 적용되었던 알고리즘들인 COWEB 과 C4.5를 이용한 결과를 비교분석 하였다.

  • PDF

Forward Vehicle Tracking Based on Weighted Multiple Instance Learning Equipped with Particle Filter (파티클 필터를 장착한 가중된 다중 인스턴스학습을 이용한 전방차량 추적)

  • Park, Keunho;Lee, Joonwhoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.377-385
    • /
    • 2015
  • This paper proposes a novel forward vehicle tracking algorithm based on the WMIL(Weighted Multiple Instance Learning) equipped with a particle filter. In the proposed algorithm Haar-like features are used to train a vehicle object detector to be tracked and the location of the object are obtained from the recognition result. In order to combine both the WMIL to construct the vehicle detector and the particle filter, the proposed algorithm updates the object location by executing the propagation, observation, estimation, and selection processes involved in particle filter instead of finding the credence map in the search area for every frame. The proposed algorithm inevitably increases the computation time because of the particle filter, but the tracking accuracy was highly improved compared to Ababoost, MIL(Multiple Instance Learning) and MIL-based ones so that the position error was 4.5 pixels in average for the videos of national high-way, express high-way, tunnel and urban paved road scene.

Painters who Climbed Out the Museum and Disappeared (박물관 넘어 도망친 화가들)

  • Kim, Hyeonji;Song, Jiuhn;Yeo, Hwaseon;Kang, Je-won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.358-360
    • /
    • 2020
  • 본 팀은 웹캠으로 촬영한 영상에서 원하는 물체를 선택하여 텍스처를 선택한 이미지의 스타일로 변환하는 프로젝트를 수행했다. 영상을 세그멘테이션하고 원하는 물체만을 원하는 텍스처로 변환하여 최종 아웃풋을 얻는다. 제안하는 네트워크는 물체를 다양한 스타일로 바꾸는 것이 가능한데, 이 중에서 이미지에 명화의 화풍을 입히는 것을 중점으로 하여 데모를 구현했다. 빠른 속도로 네트워크를 실행하기 위해 기존 연구들에 비디오 처리의 관점을 접목했다. 여러 프레임을 묶어 옵티컬 플로우를 생성하고, 첫 번째 프레임을 인스턴스 세그멘테이션한 후 마스크를 추출했다. 이후 마스크 영역만 뽑아낸 이미지를 새로운 입력으로 하여 스타일 트랜스퍼를 거치고, 이 첫번째 프레임과 나머지 프레임들의 옵티컬 플로우로 나머지 프레임들의 세그멘테이션과 스타일 트랜스퍼를 예측하여 다시 비디오 프레임으로 만들어 주었다. 본 알고리즘은 옵티컬 플로우 설정으로 네트워크의 계산량을 줄이며 속도를 개선했다. 빠른 데이터 처리로 사용자가 원하는 물체의 텍스쳐가 바뀔 수 있게 되었고, 이는 현실 세계가 실제로 바뀐 듯한 느낌을 들게 한다. 또한, 컴퓨터 비전에서 활발하게 연구되었던 분야를 AR로 끌어와 두 분야의 융합 가능성을 열었다. 현재 코로나의 영향으로 집에서 취미생활을 즐기는 인구가 많아졌다. 본 연구를 통해 많은 사람에게 집에서 쉽게 명화의 감성을 즐기고 느낄 수 있는 양질의 콘텐츠를 제공해주려 한다. 또한, 박물관과 미술관 등의 기관에서도 이 기술이 활용될 수 있다. 명화를 느낄 수 있는 다양한 콘텐츠를 이용하여 박물관이나 미술관의 홍보 효과도 기대할 수 있다.

  • PDF

A Design of Knowledge Base for the Service of Collaboration Support between Researchers (연구자 간 협업 지원 서비스를 위한 지식 베이스 설계)

  • Jung, Han-Min;Sung, Won-Kyung;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.173-178
    • /
    • 2005
  • 지식 베이스는 대량의 인적 물적 자원을 투입하고 철저한 설계에 기반하여 구축하여야 하는 부담이 큰 자원이다. 그렇지만, 지식 베이스 없이 다양한 응용 분야와 서비스를 만족시키는 시스템을 구축할 수 없기 때문에 그 중요성을 인정하지 않을 수 없다. 기존의 지식베이스 구축에 있어서 간과했던 것들의 하나는 응용 분야와 서비스를 명확히 하고, 해당분야에 안는 지식 베이스를 선택해야 한다는 것이다. 어휘의미망을 포함하여 시소러스를 범용 또는 여러 분야에서 구축하고 있으나 이들이 어떤 서비스에 도움이 되는지를 확실히 분석하지 못함으로 인해 응용 시스템에서 제 기능을 다하지 못하고 있으며, 온톨로지 또한 근본적으로 분야와 활용 목적에 의존적이어서 이를 고려하여 설계를 하지만 시소러스나 용어 사전과 같은 기본적인 지식 베이스와의 연계를 통한 효율성 재고라는 측면에서 약점을 보여왔다. 본 연구에서는 사용자 질의와 실 데이터간의 어휘 불일치 해소를 위해 시소러스를 설계 구축하고 온톨로지의 사례화 결과인 인스턴스와 연동시킴으로써 연구자 간 협업 지원 서비스를 제공할 수 있는 기반 자원으로서의 지식 베이스 구축에 초점을 둔다.

  • PDF

Classification Performance Improvement of UNSW-NB15 Dataset Based on Feature Selection (특징선택 기법에 기반한 UNSW-NB15 데이터셋의 분류 성능 개선)

  • Lee, Dae-Bum;Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.35-42
    • /
    • 2019
  • Recently, as the Internet and various wearable devices have appeared, Internet technology has contributed to obtaining more convenient information and doing business. However, as the internet is used in various parts, the attack surface points that are exposed to attacks are increasing, Attempts to invade networks aimed at taking unfair advantage, such as cyber terrorism, are also increasing. In this paper, we propose a feature selection method to improve the classification performance of the class to classify the abnormal behavior in the network traffic. The UNSW-NB15 dataset has a rare class imbalance problem with relatively few instances compared to other classes, and an undersampling method is used to eliminate it. We use the SVM, k-NN, and decision tree algorithms and extract a subset of combinations with superior detection accuracy and RMSE through training and verification. The subset has recall values of more than 98% through the wrapper based experiments and the DT_PSO showed the best performance.

AI-Based Object Recognition Research for Augmented Reality Character Implementation (증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구)

  • Seok-Hwan Lee;Jung-Keum Lee;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1321-1330
    • /
    • 2023
  • This study attempts to address the problem of 3D pose estimation for multiple human objects through a single image generated during the character development process that can be used in augmented reality. In the existing top-down method, all objects in the image are first detected, and then each is reconstructed independently. The problem is that inconsistent results may occur due to overlap or depth order mismatch between the reconstructed objects. The goal of this study is to solve these problems and develop a single network that provides consistent 3D reconstruction of all humans in a scene. Integrating a human body model based on the SMPL parametric system into a top-down framework became an important choice. Through this, two types of collision loss based on distance field and loss that considers depth order were introduced. The first loss prevents overlap between reconstructed people, and the second loss adjusts the depth ordering of people to render occlusion inference and annotated instance segmentation consistently. This method allows depth information to be provided to the network without explicit 3D annotation of the image. Experimental results show that this study's methodology performs better than existing methods on standard 3D pose benchmarks, and the proposed losses enable more consistent reconstruction from natural images.