• Title/Summary/Keyword: 인스턴스 선택

Search Result 16, Processing Time 0.036 seconds

Classification of Parkinson's Disease Using Defuzzification-Based Instance Selection (역퍼지화 기반의 인스턴스 선택을 이용한 파킨슨병 분류)

  • Lee, Sang-Hong
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.109-116
    • /
    • 2014
  • This study proposed new instance selection using neural network with weighted fuzzy membership functions(NEWFM) based on Takagi-Sugeno(T-S) fuzzy model to improve the classification performance. The proposed instance selection adopted weighted average defuzzification of the T-S fuzzy model and an interval selection, same as the confidence interval in a normal distribution used in statistics. In order to evaluate the classification performance of the proposed instance selection, the results were compared with depending on whether to use instance selection from the case study. The classification performances of depending on whether to use instance selection show 77.33% and 78.19%, respectively. Also, to show the difference between the classification performance of depending on whether to use instance selection, a statistics methodology, McNemar test, was used. The test results showed that the instance selection was superior to no instance selection as the significance level was lower than 0.05.

Learning Multiple Instance Support Vector Machine through Positive Data Distribution (긍정 데이터 분포를 반영한 다중 인스턴스 지지 벡터 기계 학습)

  • Hwang, Joong-Won;Park, Seong-Bae;Lee, Sang-Jo
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.227-234
    • /
    • 2015
  • This paper proposes a modified MI-SVM algorithm by considering data distribution. The previous MI-SVM algorithm seeks the margin by considering the "most positive" instance in a positive bag. Positive instances included in positive bags are located in a similar area in a feature space. In order to reflect this characteristic of positive instances, the proposed method selects the "most positive" instance by calculating the distance between each instance in the bag and a pivot point that is the intersection point of all positive instances. This paper suggests two ways to select the "most positive" pivot point in the training data. First, the algorithm seeks the "most positive" pivot point along the current predicted parameter, and then selects the nearest instance in the bag as a representative from the pivot point. Second, the algorithm finds the "most positive" pivot point by using a Diverse Density framework. Our experiments on 12 benchmark multi-instance data sets show that the proposed method results in higher performance than the previous MI-SVM algorithm.

A development on Ontology Instance Management Tool (온톨로지 인스턴스 생성 지원 도구 개발)

  • Lee, Mikyoung;Jung, Hanmin;Kim, Mun Seok;Sung, Won-Kyung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.386-390
    • /
    • 2007
  • In this paper we present an Ontology Instance Management Tool. OntoManager is a user-friendly interactive ontology Instance management tool with webpage annotation tool and an image annotation tool. It supports the user with the task of creating and maintaining ontology-based OWL-markup, creating of OWL-instances, attributes and relationships. It include an ontology browser for the exploration of the ontology and instances and a HTML browser that will display the annotated parts of the text. And OntoManager is an image annotation tool that allows users to markup regions of an image with respect to concepts in an ontology. It provides the functionality to import images, ontologies, instance bases, perform markup, and export the resulting annotations to disk or the Web.

  • PDF

Discriminating User Attributes in Social Text based on Multi-Instance Learning (다중 인스턴스 학습 기반 사용자 프로파일 식별)

  • Song, Hyun-Je;Kim, A-Yeong;Park, Seong-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.47-52
    • /
    • 2012
  • 본 논문에서는 소셜 네트워크 서비스에서 사용자가 작성한 텍스트로부터 그 사용자 프로파일 식별하는 문제를 다룬다. 프로파일 식별 관련 기존 연구에서는 개별 텍스트를 하나의 학습 단위로 간주하고 이를 기반으로 학습 모델을 구축한다. 프로파일을 식별하고자 하는 사용자의 텍스트들이 주어지면 각 텍스트마다 프로파일을 식별하고, 식별된 결과들을 합쳐 최종 프로파일로 선택한다. 하지만 SNS 특성상 프로파일을 식별하는 데에 영향을 끼치지 않는 텍스트들이 다수 존재하며, 기존 연구들은 이 텍스트들을 특별한 처리없이 학습 및 테스트에 사용함으로 인해 프로파일 식별 성능이 저하되는 문제점이 있다. 본 논문에서는 다중 인스턴스 학습(Multi-Instance Learning)을 기반으로 사용자 프로파일을 식별한다. 제안한 방법은 사용자가 작성한 텍스트 전체, 즉 텍스트 집합을 학습 단위로 간주하고 다중 인스턴스 학습 문제로 변환하여 프로파일을 식별한다. 다중 인스턴스 학습을 사용함으로써 프로파일 식별에 유의미한 텍스트들만이 고려되고 그 결과 프로파일 식별에 영향을 끼치지 않는 텍스트로부터의 성능 하락을 최소화할 수 있다. 실험을 통해 제안한 방법이 기존 학습 방법보다 성별, 나이, 결혼/연애 상태를 식별함에 있어서 더 좋은 성능을 보인다.

  • PDF

A Selection of Threshold for the Generalized Hough Transform: A Probabilistic Approach (일반화된 허프변환의 임계값 선택을 위한 확률적 접근방식)

  • Chang, Ji Y.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.161-171
    • /
    • 2014
  • When the Hough transform is applied to identify an instance of a given model, the output is typically a histogram of votes cast by a set of image features into a parameter space. The next step is to threshold the histogram of counts to hypothesize a given match. The question is "What is a reasonable choice of the threshold?" In a standard implementation of the Hough transform, the threshold is selected heuristically, e.g., some fraction of the highest cell count. Setting the threshold too low can give rise to a false alarm of a given shape(Type I error). On the other hand, setting the threshold too high can result in mis-detection of a given shape(Type II error). In this paper, we derive two conditional probability functions of cell counts in the accumulator array of the generalized Hough transform(GHough), that can be used to select a scientific threshold at the peak detection stage of the Ghough.

Network Slice Selection Function on M-CORD (M-CORD 기반의 네트워크 슬라이스 선택 기능)

  • Rivera, Javier Diaz;Khan, Talha Ahmed;Asif, Mehmood;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.21 no.2
    • /
    • pp.35-45
    • /
    • 2018
  • As Network Slicing functionality gets applied to mobile networking, a mechanism that enables the selection of network slices becomes indispensable. Following the 3GPP Technical Specification for the 5G Architecture, the inclusion of the Network Slice Selection Function (NSSF) in order to leverage the process of slice selection is apparent. However, actual implementation of this network function needs to deal with the dynamic changes of network instances, due to this, a platform that supports the orchestration of Virtual Network Functions (VNF) is required. Our proposed solution include the use of the Central Office Rearchitected as a Data Center (CORD) platform, with the specified profile for mobile networks (M-CORD) that integrates a service orchestrator (XOS) alongside solutions oriented to Software Defined Networking (SDN), Network Function Virtualization (VNF) and virtual machine management through OpenStack, in order to provide the right ecosystem where our implementation of NSSF can obtain slice information dynamically by relying on synchronization between back-end services and network function instances.

A Study on Specification and Composition of Design Pattern Component (디자인 패턴 컴포넌트의 명세와 조립에 관한 연구)

  • 하성민;송영재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1625-1628
    • /
    • 2003
  • 본 논문은 패턴 지향 설계를 함에 있어 필요한 구조적 디자인 패턴의 가시적 조립을 목적으로 하며, 재사용 가능한 패턴들을 명세 및 조립하는 방안을 제안함으로써 애플리케이션 설계의 복잡성을 감소시키고자 한다. 본 논문은 패턴 지향 설계를 함에 있어 필요한 구조적 디자인 패턴의 가시적 조립을 목적으로 한다. 디자인 패턴 컴포넌트의 명세에서 패턴 인터페이스들 사이의 관계를 명시적으로 정의하며 패턴의 내부와 인터페이스 사이의 관계를 기술한다 디자인 패턴 컴포넌트의 조런은 패턴 타입과 인스턴스 네임으로 구성되며, 두 패턴 사이의 관계는 종속으로 지시되고 저장소로부터 패턴을 선택하여 종속을 정의하고 방향을 정해주게 된다.

  • PDF

A study on Deep Q-Networks based Auto-scaling in NFV Environment (NFV 환경에서의 Deep Q-Networks 기반 오토 스케일링 기술 연구)

  • Lee, Do-Young;Yoo, Jae-Hyoung;Hong, James Won-Ki
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.1-10
    • /
    • 2020
  • Network Function Virtualization (NFV) is a key technology of 5G networks that has the advantage of enabling building and operating networks flexibly. However, NFV can complicate network management because it creates numerous virtual resources that should be managed. In NFV environments, service function chaining (SFC) composed of virtual network functions (VNFs) is widely used to apply a series of network functions to traffic. Therefore, it is required to dynamically allocate the right amount of computing resources or instances to SFC for meeting service requirements. In this paper, we propose Deep Q-Networks (DQN)-based auto-scaling to operate the appropriate number of VNF instances in SFC. The proposed approach not only resizes the number of VNF instances in SFC composed of multi-tier architecture but also selects a tier to be scaled in response to dynamic traffic forwarding through SFC.

Analysis of characteristics and location of the appearance for codding pattern in the source code (소스 코드에 포함된 코딩 패턴의 특성과 출현 위치 관련성에 대한 분석)

  • Kim, Young-Tae;Kong, Heon-Tag;Kim, Chi-Su
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.165-171
    • /
    • 2013
  • Coding patterns that appeared frequently in the source code is a typical piece of code. The functionality that difficult to modularize, such as logging or synchronization processing, and the useful sentences in programming is extracted in software as codding pattern. Large-scale software could not be analyzed fully because the number of coding pattern that can be manually investigated is limited. In this paper, the characteristics of coding patterns perform the evaluation. The goal is to extract for codding-pattern to analyzed by developer. We was selected 6 indicators and performed analysis of 4 open-source. Matrix relations between the values and characteristics of the actual pattern analysis, pattern instances, the width of the distribution of instances, the pattern repeating structure of the elements included in the rates should be analyzed for patterns and indicators that help in choosing was confirmed.

Analytical Approach for Scalable Feature Selection (확장 가능한 요소선택방법을 위한 분석적 접근)

  • Yang, Jae-Kyung;Lee, Tae-Han
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.2
    • /
    • pp.75-82
    • /
    • 2006
  • 본 연구에서 조합 최적화(Combinatorial Optimization) 이론에 바탕을 두고 있는 네스티드 분할(Nested Partition, 이하 NP) 방법을 이용한 최적화 기탄 요소선택 방법(Feature Selection)을 제안한다. 이 새로운 방법은 좋은 요소 부분집합을 찾는 휴리스틱 탐색 절차를 채용하고 있으며 데이터의 인스턴스(Instances 또는 Records)의 무작위 추출(Random Sampling)을 이용하여 이 요소선택 방법의 처리시간 관점에서의 성능을 항상 시키고자 한다. 이 새로운 접근 방법은 처리시간 향상을 위해 2단계 샘플링 방법을 채용하여 근접 최적해로의 수렴(Convergence)을 보장하는 샘플 사이즈를 결정한다. 이는 앨고리듬이 유한한 시간내에 끝이날 때 최종 요소 부분집합 해의 질(Qualtiy)에 관한 정확한 설명을 할 수 있는 이론적인 배경을 제시한다. 중요 결과를 예시하기 위해서 다양한 형태의 다섯 개의 데이터 셋을 이용하였으며 다섯 번의 반복 실험을 통한 실험 결과가 제시되며, 이 새로운 접근 방법이 기존의 단순 네스티드 분할 방법 기반의 요소선택 방법보다 처리시간 관점에서 더욱 효율적임을 보여준다.