• Title/Summary/Keyword: 인삼 잎

Search Result 147, Processing Time 0.036 seconds

Chemical Components and Enzyme Activity of Hydroponic-cultured Ginseng Roots and Leaves under Different Heating Temperatures (열처리 온도에 따른 수경재배인삼의 화학성분과 효소활성)

  • Hwang, Cho Rong;Joung, Eun Mi;Lee, Sang Hoon;Hwang, In Guk;Kim, Yong Bum;Jeong, Jae Hyun;Lee, Junsoo;Jeong, Heon Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.911-916
    • /
    • 2013
  • This study investigated changes in the chemical components and enzyme activities from hydroponic-cultured ginseng roots (HGR) and leaves (HGL) with various heating temperatures (90, 110, 130, and $150^{\circ}C$) for 2 hours. The UV-absorbance and browning intensity of heated ginseng significantly increased with heating temperature. 5-HMF contents also significantly increased with increasing heating temperature. The free sugars (fructose, glucose, and sucrose) were detected and sucrose content decreased, but fructose and glucose content increased with increasing heating temperature. Malic, citric, lactic, and oxalic acid contents were 817.52, 722.25, 122.06, and 18.43 mg%, respectively, in HGR and 682.84, 338.21, 90.37, and 0 mg%, respectively, in HGL at $150^{\circ}C$. Tyrosinase and ACE inhibitory activities significantly increased with heating temperature. These results show that various components and activities of HGT and HGL significantly increase with heating temperature.

Studies on the Uptake of Mineral Nutrients by Ginseng Plant (인삼의 무기 영양 흡수에 관한 연구)

  • Kim, Joon-Ho;Moon, Hyung-Tae;Chae, Myung-In
    • Journal of Ginseng Research
    • /
    • v.2 no.1
    • /
    • pp.35-57
    • /
    • 1977
  • Seasenal absorption of inorganic nutrients and dry matter Production were studied with four-year-old ginseng plant. The residuary amounts of the nutrients supplied to ginseng Plantation were decreased with lime elapsed. The decreasing rate was greater in chemical plots than in Yacto Plots. The amounts of manure applied in this current year and growth in dry matter production of ginseng showed no signficant difference. The amounts of mineral nutrients per unit dry matter were proportional to the amounts of supplied with chemical fertilizer in the early period of growing season but with Yacto in the late season of growing. Seasonal changes of nitrogen, Phosphorus and Potassium contents per unit dry weight in each organ were high in the middle of May. They decreased sharply in the middle of June and then slowly decreased in both leaves and stems but gradually increased in roots. The absorption ratio of nitrogen to Phosphorus (N/P) was high, and that of nitrogen to Potassium (N/K) was few. The amounts of nitrogen, phosphorus and Potassium in leaves became lower with increasing the relative light intensity, but in stems, the concentrations were different with the kind of mineral nutrients. The requisite amounts of mineral nutrient of ginseng plant were 8.3∼9.9 kg of nitrogen, 1.2∼1.5 kg of phosphorus, 6.4∼7.9 kg of potassium Per 10 a for five years.

  • PDF

Effect of High Temperature and Growth Light Intensity on Fatty Acid Composition of Panax ginseng leaf (고온(高溫)과 재배광도(栽培光度)가 인삼(人蔘) 잎의 지방산(脂肪酸) 조성(組成)에 미치는 영향(影響))

  • Park, Hoon;Park, Hyeon-Suk;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.29 no.4
    • /
    • pp.366-371
    • /
    • 1986
  • Fatty acid compositions of Panax ginseng leaves (6 year) grown under different light intensity in field and of the detached leaves exposed to high temperature (20 hours) were investigated by gas chromatography. Linoleic, linolenic, palmitic and palmitoleic acid were the major components(80%) of leaf lipid. The higher the growth light intensity, the lower the percentage of unsaturated acids or bonds, indicating metabolic adaptation to high temperature. Pattern similarity of fatty acid composition was little changed until 20% light but significantly different at 30%, suggesting 20% as limitation light intensity. The close similarity of fatty acid composition between the loaves grown under 30% light and the one at harvest rises uncertainty between adaptation to high temperature and senescence. Total fatty acid content decreased with the increase of light intensity. Short term high temperature $(25^{\circ}C\;or\;35^{\circ}C)$ increased total fatty acid content, unsaturated acid percentage and insignificant difference in pattern similarity of composition.

  • PDF

Induction and in vitro proliferation of adventitious roots in Dendropanax morbifera Lev. (황칠나무(Dendropanax morbifera Lev.)의 부정근 유도 및 기내증식조건)

  • Bae, Kee-Hwa
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.19-19
    • /
    • 2010
  • 황칠나무(Dendropanax morbifera Lev.)는 두릅나무과(Araliaceae)에 속하며 학명에서 뜻하는 바와 같이 목본 (Dendro), 전능약(Panax)이라는 의미가 있고 나무인삼이라 불리기도 하며 줄기에 상처를 내면 노란액이 나온다고 해서 황칠나무(D. morbifera)라는 이름이 붙여졌다. 두릅나무과는 우리나라에서 최고의 약재들로 손꼽히는 인삼(Panax ginseng), 가시오갈피(Eleutherococcus senticosus) 등의 약용식물을 포함하고 있어서 황칠나무는 황칠수지액 이외에 약용식물로서의 무한한 개발 가능성을 내포하고 있다. 따라서 본 실험은 황칠나무의 기내 부정근 유도 및 증식조건의 확립을 목적으로 수행되었다. 우선 황칠나무의 기내 발아체로부터 부위(잎, 줄기, 뿌리)를 달리하여 부정근을 유도한 결과, 잎은 줄기나 뿌리보다 양호한 부정근의 유도를 보였다. 또한 유도된 부정근을 이용하여 옥신의 종류에 따른 부정근 유도율을 조사한 결과 IBA와 NAA는 IAA와 2.4-D보다 높은 유도율을 보였다. IBA의 농도에 따른 유도율과 증식효율은 IBA가 1.0 mg/L 첨가되었을 때 가장 높은 유도 및 증식효율을 보였다. 최적의 액체배지조건을 확인하고자 sucrose의 농도와 염농도를 달리하여 실험한 결과 1/2MS 배지는 MS 배지보다 10%정도 높은 증식율을 보였다. 액체배양 된 황칠나무의 부정근을 각각 1/2MS 배지에 30 g/L sucrose, 3.0 mg/L IBA가 첨가된 5 L volume 생물반응기에 4주 간 배양한 대조구와 2주 후 IBA의 농도를 1.0으로 낮추어 배양한 실험구에서 2주후 IBA의 농도를 낮추어 배양한 실험구에서 대조구보다 약 2배 높은 부정근의 증식량을 보였다. 결국, 황칠나무의 종자발아체를 이용하여 부정근의 유도 및 증식조건에 필요한 기내배양조건을 확립하였고, 플라스크와 생물반응기 배양을 통해 효율적인 실험실 내 증식조건을 확립하였다. 본 실험결과는 향후 황칠나무 천연추출물을 활용한 향장품/식,의약품 소재의 대량확보 차원에서 중요한 가치를 내포하고 있다고 조심스럽게 사료된다.

  • PDF

Response of Korean ginseng (Panax ginseng C. A. Meyer) to 2, 4-D I . Effects of 2, 4-D concentrations on Growth and Root Yield (제초제 2, 4-D에 대한 고려인삼의 반응 I. 2, 4-D의 농도가 인삼의 생육 및 근수량이 미치는 영향)

  • 조재성
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.422-427
    • /
    • 1989
  • Weeds may compete detrimentally with the ginseng for moisture and nutrients but hand weeding is the only practical means of eliminating weeds after crop establishment. To define the effects of 2, 4-D herbicide application on the plant growth and root yield of Korean ginseng (Panax ginseng C. A. Meyer). the herbicide 2, 4-D was applied as a foliar spray with the rates of 0.5. 1.0. 1.5 and 2.0 times of the recommended herbicide dosage 70ml/l0a. The Korean ginseng treated with 2, 4-D in the rate of two times concentration was indistinguishable from nontreated plants in visual rating for foliar symptoms. There were no significant differences of the leaf length and width as well as the stem length and diameter in check plants and those recieving 2, 4-D treatments. The. berry maturing in 3 and 4-years old ginseng was not inhibited with 2, 4-D treatment. The root weight of the 4-years old ginseng plant was not reduced by 2, 4-D application of 2 times dosage. However. when the ginseng seedling was treated with 2, 4-D. detrimental phenomena as stem bending and dicoloration of marginal part of seedling leaf were occured but stem bending was recovered in a few days.

  • PDF

The Change of Ginsenoside Composition in Ginseng Leaf and Stem Extract by the Microwave and Vinegar Process (인삼 잎 줄기 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Kim, Shin Jung;Kim, Ju Duck;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.149-153
    • /
    • 2013
  • The purpose of this study was to develop a new preparation process of ginseng extract with the high concentration of prosapogenin, the specific component in Red ginseng. Chemical transformation from the ginseng saponin glycosides to the prosapogenin was analyzed by the HPLC. The extracts of ginseng leaf and stem were processed at the several treatment conditions of the microwave and vinegar(about 14% acidity). MGLS-20 findings show that the ginseng leaf and stem extracts that had been processed with microwave and vinegar for 20 minutes peaked in the level of ginsenoside $Rg_3$(0.906%). MGLS-25 peaked in the level of ginsenoside $Rg_5$(0.329%) in the ginseng leaf and stem extract processed with microwave and vinegar for 25 minute. And the other kinds of ginseng prosapogenin did not show a higher content.