• Title/Summary/Keyword: 인발성능

Search Result 124, Processing Time 0.032 seconds

Withdrawal and Lateral Resistance of Nail Joints Composed of Dimension Lumber and OSB in Light-Frame Wood Construction (경골목구조에서 구조재와 오에스비로 구성된 못 접합부의 인발 및 전단성능)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.211-220
    • /
    • 2013
  • The nailed joints in wood construction are commonly designed to resist and carry the lateral load but also subject to withdrawal force like uplift load due to the wind. This research was conducted to evaluate the performance of nailed joint composed of dimension lumber and sheathing materials through the nail withdrawal and unsymmetric double shear joint test, and then compared to current design values. The withdrawal strength was greatly dependant on wood specific gravity, and the withdrawal strength of I-joist with OSB showed higher value in spite of low specific gravity. The maximum withdrawal loads were greater than that of derived current design values about 5 times. The lateral resistance of Japanese larch/OSB nailed joints was higher than that of SPF/OSB nailed joint, and derived allowable lateral strength of nailed joints in this study exceeded the current design values. The failure mode of nailed joints was primarily due to the nail bending and this tendency was notable in SPF/OSB nailed joint.

Experimental Study on Pull-out Strength of Glued-in Rods Connection according to Adhesive (접착제에 따른 Glued-in Rod 접합부 인발성능에 관한 실험 연구)

  • Park, Keum-Sung;Oh, Keunyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.149-160
    • /
    • 2022
  • In this study, a pull-out test considering the adhesive type, embedded length, and direction of re-bar was conducted to evaluate the pull-out performance of glued-in rod joints using timber and adhesive produced in Korea. In the test, the specimens using liquid adhesive showed better pull-out performance, and the longer the embedded length of the re-bar, the higher the maximum tensile load by inducing the yield of the re-bar first. Through the test results, a glued-in rod joints design, which is advantageous to design the adhesive strength stronger than the yield strength of re-bar, was proposed, and a correction factor of 0.75 for the adhesive strength considering construction error was also suggested.

Development of a Lifting Type Garlic Harvester(2) - Construction and Performance Test of a Prototype Harvester - (인발식 마늘수확기 개발(2) - 시작기 제작 및 성능 검증 -)

  • 장영창;노광모;박준걸
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.07a
    • /
    • pp.83-88
    • /
    • 1999
  • 인발식 마늘 수확기의 기본개념은 마늘줄기가 인발 가이드를 따라 마늘줄기 인발부로 안내되어 지면 상방향으로 인발, 이송되는 방식으로서 인력에 의한 마늘수확 메카니즘과 유사하다. 그러나 수확기가 전진함에 따라 마늘이 연속적으로 인발되어 인력작업에 비해 매우 높은 수확능률을 갖는다. 또한 굴취식 수확기와 비교하여 연료가 절감되고 통마늘의 손상이 적은 장점이 있다. (중략)

  • PDF

Evaluation of Pull-out Performance of Torsion Control Expansion Anchor According to Drill Bit Diameter (드릴비트 직경에 따른 비틀림 제어 확장 앵커의 인발성능 평가)

  • Kyoung-Hun Chae;Tae-Wo Park;Moo-Won Hur;Yeong-Seung An;Ju-Yeon Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.64-70
    • /
    • 2023
  • In this study, reliability tests of torsion control expansion anchors according to drill bit diameters were performed. The standard deviation and coefficient of variation of the anchor were reviewed through the tests for each variable, and the results were compared and evaluated with the standard test results. As a result of the reliability test of the M12 and M16 anchors with 1.04 times the drill bit diameter, they were within 20% of the ultimate tensile load permissible standard coefficient of variation. It was found that the pulling-out performance of the anchor installed in the large hole was sufficiently secured. However, it was found to be about 253% and 210% of the design strength, indicating that the pulling performance of the anchor installed in 1.04 times the drill bit diameter was sufficiently secured. As a result of the reliability test of the M12 and M16 anchors with 1.02 times the drill bit diameter, the value of the coefficient of variation of the ultimate tensile load limit was within 20%, which satisfies the test standard. It was shown to be about 136% and 168% of the design strength, indicating that the pulling-out performance of the anchor installed in 1.02 times the drill bit diameter is sufficiently secured.

Experimental study on pullout performance of structural fiber embedded in cement composites according to fineness modulus of fine aggregate (시멘트 복합체에 근입된 숏크리트용 구조 섬유의 잔골재 조립률에 따른 인발성능 비교)

  • Choi, Chang-Soon;Lee, Sang-Don;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.317-326
    • /
    • 2022
  • This research performed single fiber pull-out test to evaluate the effect between fineness modulus of cement composites and the fiber bond performance (bond strength and pull-out energy). A synthetic fiber (polypropylene) and a steel fiber (hooked ends type) were inserted in the middle of dog bone shape specimens which were designed with fine aggregates of F. M. 1.96, 2.69, 3.43. The experiment results showed bond strength and pullout energy of synthetic fiber are improved as fineness modulus of cement composites increases. It is considered that the frictional resistance between synthetic fiber and cement composite increases as fineness modulus of cement composite increases and consume more energy while pull out the fiber from cement composite. However bond performance of steel fiber which resist pull out by mechanical behavior is less effected on fineness modulus of cement composite. It is considered that the mechanical fixedness of hooked ends exerts a greater effect on the pullout resistance than the frictional resistance between the cement composite and the steel fiber so F. M. of fine aggregate has a relatively small effect on the pullout resistance with the steel fiber.

Pullout and Flexural Performance of Structural Synthetic Fibers by Geometry and Sectional Area Change (구조용 합성섬유의 형상 및 단면적 변호에 따른 부착 및 휨 성능)

  • Won, Jong-Pil;Back, Chul-Woo;Park, Chan-Gi;Han, Il-Yeong;Kim, Bang-Lae
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.643-649
    • /
    • 2003
  • The purpose of this study were evaluated to flexural and bond performance by sectional area and geometry change through bond and flexural test of a structural synthetic fiber. Six deformed structural synthetic fibers were investigated and pullout and flexural test was conducted. Included parameters is three different geometries of fiber and two of fiber sectional area. The test result shows that the cycles and amplitude of structural synthetic fiber increased, pullout load and pullout fracture energy decreased and flexural strength increased, if sectional area is same. The sectional area increased, pullout load and pullout fracture energy increased and flexural strength decreased, if cycles and amplitude of structural synthetic fiber is same. Based on test results, structural performance of the concrete could know that is influence by pullout performance of fiber as well as various factor (fiber number, material properties etc).

Bond Strength of Steel Fiber Incorporated in Ultra High Performance Fiber-Reinforced Concrete (초고성능 섬유보강 콘크리트에 혼입된 강섬유의 부착강도 평가)

  • Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.547-554
    • /
    • 2013
  • This study was intended to estimate the bond strength of steel fiber in UHPFRC through pullout test. The pullout test was carried out with the double-sided pullout specimens with multiple fibers. First, the effect of fiber density on the bond strength was investigated, and the experimental result presented that the density range considered in this study was proved not to produce fiber-to-fiber interaction. The bond strength was estimated from several methods, which are based on the pullout load or energy at peak load, and the total energy absorbed until fibers are pulled out completely. the estimated bond strength obtained from the total energy was shown to be under the influence of the embedded length of fiber. the bond strengths obtained from peak load condition was 6.64 MPa in average, which had little difference compared to 6.46 MPa calculated by peak load only. Considering simplicity of test and analysis, it may be no matter to estimate the bond strength from peak load in pullout test.

Two-dimensional Model Testing System for Analysis of PVD Installation and Soil Disturbance (PVD 설치 및 지반교란의 분석을 위한 2차원 모형실험 시스템)

  • Kim, Jae Hyun;Choo, Yun Wook;Park, Hyun-Il;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.149-157
    • /
    • 2012
  • In order to investigate the soil disturbance induced by anchor-shoe for PVD installation and the anchoring mechanism, a new two dimensional testing system was developed. By using the developed testing system, 1g and centrifuge model tests were performed, simulating the driving-retrieval process of both conventional symmetric anchor shoe and new asymmetric anchor shoe. Various size anchor-shoes were simulated and the results were compared. The images recorded during the installation were analyzed by image processing technique. The results of the image analysis presented the clay disturbance depending on the size and type of anchor shoe. In addition, from the retrieval process, the anchoring mechanism was revealed and the holding capacity was measured. As results, the size of anchor shoe influences the soil disturbance and holding capacity. The new asymmetric anchor shoe reduces the soil disturbance and improves anchoring performance.

Performance Evaluation of Pull-out Load of a New Type of Double-wall Pile Foundation for Easy Demolition (기초구조물 회수가 용이한 신형식 이중벽 말뚝기초의 인발하중 성능평가)

  • Kim, Jae-Hyun;Kim, Jeong-Soo;Lee, Minjy;Sven, Falcon Sen;Choo, Yun Wook;Hwang, Sung-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.21-32
    • /
    • 2022
  • Steel pile foundations are widely used for offshore constructions due to their high bearing capacity and efficiency. Typically, offshore structures that have reached the end of their design life are required to be demolished. However, pile foundations are often left on site due to technical and economic limitations. The pile left on the site not only pollutes the environment, but can also cause obstacles for the construction of new structures. Therefore, research is required to completely eliminate these foundations at the site. In this study, a new type of double-wall pile foundation that can drastically reduce the pull-out load was conceptually proposed, and a series of model tests were performed to validate the performance of the double-wall pile foundation. The installation and extraction of the double-wall pile were simulated in dry sand in the model test, and the measured up-lift load was compared to that of the conventional pile. According to the result, the maximum up-lift load induced by the decommissioning of the double-wall pile was reduced by 45% when compared to the traditional pile in dense sand. This study verified the mechanism for reducing the up-lift load of the double-wall foundation and confirmed the possibility of completely decommissioning a pile that has reached the end of its nominal service life.