• Title/Summary/Keyword: 인력예측모델

Search Result 88, Processing Time 0.033 seconds

Predicting the influent properties in an infiltration trench through deep learning analysis (딥러닝 분석을 통한 침투도랑 내 유입수 성상 예측분석)

  • Jeon, Minsu;Choi, Hyeseon;Geronimo, Franz Kevin;Heidi, Guerra;Jett, Reyes Nash;Kim, Leehyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.363-363
    • /
    • 2022
  • LID 시설에 대한 모니터링은 인력을 활용한 실강우 모니터링을 진행하고 있으나 LID 시설은 소규모 분산형시설로서 인력을 동원한 식생고사, 강우시 모니터링, 현장답사 등 꾸준한 시설확인에 한계가 있으며, LID 시설을 조성한 이후 적정한 유지관리 방법(주기, 빈도, 항목 등)을 인지하지 못하여 막힘현상, 효율저하, 식물고사 등의 문제가 발생한다. 따라서 본연구에서는 딥러닝 분석을 활용하여 강우시 강우모니터링 자료와 LID 시설 내 센서를 통해 측정된 자료를 통해 침투도랑 내 유입수 성상에 대한 예측분석을 수행하였다. 심지 내 LID 시설에 유입되는 오염물질을 예측을 위한 딥러닝 분석을 위해 과거 실강우시 모니터링 자료(TSS, COD, TN, TP)와 대기센서(대기습도, 대기온도, 강수량, 미세먼지) 데이터를 활용하여 딥러닝 모델에 대한 적용가능성 평가를 수행하였다. 측정항목에 대한 상관성 분석을 수행하였으며, 딥러닝 모델은 Tenser Flow를 이용하여 DNN(Deep Neural Network)모델을 활용하여 분석하였다. DNN 모델에 대한 MSE값은 0.31로 분석되었으며, TSS에 대한 평균 50.6mg/L로 분석되었으며, COD 평균 98.7 mg/L로 나타났다. TN의 평균 2.21 mg/L로 분석되었으며, TP 평균 0.67 mg/L로 나타났다. 상관계수분석결과 TSS는 0.53로 분석되었으며, TN과 TP의 상관계수는 0.10, 0.56으로 나타났다. COD의 상관계수는 0.63으로 TSS와 COD, TP에 대한 예측이 된 것으로 분석되었다. 딥러닝을 통한 LID 시설 내 농도변화 예측시 강우시 센서데이터 값은 조밀해야하며 오염물질 농도와 상관성이 높은 항목들에 대해 계측과 실강우 모니터링 자료를 축적하여 미래에 대한 활용성을 높여야 한다.

  • PDF

The Study on the Human Resource Forecasting Model Development for Electric Power Industry (전력산업 인력수급 예측모형 개발 연구)

  • Lee, Yong-Suk;Lee, Geun-Joon;Kwak, Sang-Man
    • Korean System Dynamics Review
    • /
    • v.7 no.1
    • /
    • pp.67-90
    • /
    • 2006
  • A series of system dynamics model was developed for forecasting demand and supply of human resource in the electricity industry. To forecast demand of human resource in the electric power industry, BLS (Bureau of Labor Statistics) methodology was used. To forecast supply of human resource in the electric power industry, forecasting on the population of our country and the number of students in the department of electrical engineering were performed. After performing computer simulation with developed system dynamics model, it is discovered that the shortage of human resource in the electric power industry will be 3,000 persons per year from 2006 to 2015, and more than a double of current budget is required to overcome this shortage of human resource.

  • PDF

YOLO models based Bounding-Box Ensemble Method for Patient Detection In Homecare Place Images (조호환경 내 환자 탐지를 위한 YOLO 모델 기반 바운딩 박스 앙상블 기법)

  • Park, Junhwi;Kim, Beomjun;Kim, Inki;Gwak, Jeonghwan
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.562-564
    • /
    • 2022
  • 조호환경이란 환자의 지속적인 추적 및 관찰이 필요한 환경으로써, 병원 입원실, 요양원 등을 의미한다. 조호환경 내 환자의 이상 증세가 발생하는 시간 및 이상 증세의 종류는 예측할 수 없기에 인력을 통한 상시 관리는 필수적이다. 또한, 환자의 이상 증세 발견 시간은 발병 시점부터의 소요 시간이 생사와 즉결되기에 빠른 발견이 매우 중요하다. 하지만, 인력을 통한 상시 관리는 많은 경제적 비용을 수반하기에 독거 노인, 빈민층 등 요양 비용을 충당하지 못하는 환자들이 수혜받는 것은 어려우며, 인력을 통해 이루어지기 때문에 이상 증세 발병 즉시 발견에 한계를 가진다. 즉, 기존까지 조호환경 내 환자 관리 방식은 경제적 비용과 이상 증세 발병 즉시 발견에 한계를 가진다는 문제점을 가진다. 따라서 본 논문은 YOLO 모델의 조호환경 내 환자 탐지 성능 비교 및 바운딩 박스 앙상블 기법을 제안한다. 이를 통해, 딥러닝 모델을 통한 환자 상시 관리가 이루어지기에 높은 경제적 비용문제를 해소할 수 있다. 또한, YOLO 모델 바운딩 박스 앙상블 기법 WBF를 통해 폐색이 짙은 조호환경 영상 데이터 내에 객체 탐지 영역 정확도 향상 방법을 연구하였다.

Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining (예측적 공간 데이터 마이닝을 이용한 산불위험지역 예측)

  • Han, Jong-Gyu;Yeon, Yeon-Kwang;Chi, Kwang-Hoon;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1119-1126
    • /
    • 2002
  • In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.

Supply-Demand Forecast of Engineers according to the Change of Construction Engineers Qualification System (건설기술자 제도변화에 따른 건설기술인력 수급전망)

  • Park, Hwan-Pyo;Shin, Eun-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.2
    • /
    • pp.46-54
    • /
    • 2009
  • In the early 90s, we had serious shortage of construction engineers for the expansion of construction market. So, Government has established the admitted engineer system in 1995. However, since year 2000, while the engineershortage has been resolved, the opposite situation has occurred: serious over-supply of construction engineers. Therefore, Government announced that would abolish the admitted engineer systems as recognized the existent admitted engineers from 2007. From this point of view, it is critical to make the accurate forecast of number of required construction engineers for providing the basis for the most appropriate policy from 2008 to 2017. This research have developed a construction engineer supply-demand forecast model based on the GDP and construction market analysis. The results of this research will be applied to the basic data that policy planner establishes the supply-demand policy of construction engineers.

Direction for Improving Cost Estimation and Management of Construction Projects : Comparing to Australian System (건설공사 공사비 예측 및 관리기술 발전방향 : 호주 사례를 중심으로)

  • Ji, Sae-Hyun;Park, Moon-Seo;Lee, Hyun-Soo;Yoon, You-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.170-181
    • /
    • 2008
  • Cost of construction project have to be estimated based on drawing before execution. Cost estimate and check would be performed numerously for preparing general outline of requirements and determining the budget at conceptual planning stage, for obtaining decision on every matter related to design, specification, construction and cost at design stage, and for predicting bidding cost. Thus, importance of cost estimation cannot emphasize too much in construction. However, there are lack of standard estimation method, process, and cost analysis method, that square foot estimation method is as used as eyer, in Korea. Thus, This research present the direction for improving cost estimation and management in construction; It is demanded that establishing standard data base methodology, multi-level database model CUBE, and standard cost planning process, choosing cost estimation methodology according to objectives and cost planning process, and making more experts.

Retirement Prediction Model for ROK Navy's Maintenance Support Unit Based on Machine Learning (머신러닝을 적용한 해군 정비지원부대 퇴직자 예측 모델)

  • Jun-Min Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.335-338
    • /
    • 2023
  • 국방 무기체계의 운용유지를 위해서는 숙련자에 의한 신뢰성있는 정비 지원이 필요하다. 특히, 고도의 기술력을 바탕으로 연구/제작된 해군 무기체계를 유지하기 위해서는 이와같은 정비 지원이 무엇보다 중요하다. 해군에서는 효과적인 정비지원을 위해 수개의 정비지원부대를 조직하여 운용하고 있다. 원활한 정비지원부대의 운용을 위해 다년간 기술력을 축적한 정비인원의 중도 이탈을 예방하는 것이 요구되므로, 본 논문에서는 머신러닝을 적용하여 해군 정비지원부대의 퇴직자 예측 모델을 제안하였다. 정비인력의 만족도와 관계가 있을 것으로 예상되는 봉급, 특근율 등을 변수로 사용하였고, F1 Score를 통해 모델의 성능을 평가한 결과 0.7이상의 높은 성능을 보였다. 이 모델을 통해 조기 퇴직이 예상되는 그룹의 공통 개선소요를 파악하여 사전 조치가 가능할 것으로 판단하였다.

  • PDF

Prediction of the Number of Crimes according to Urban Environmental Factors in the Metropolitan Area (수도권 도시 환경 요인에 따른 범죄 발생 건수 예측)

  • Ye-Won Jang;Ye-Lim Kim;Si-Hyeon Park;Jae-Young Lee;Yoo-Jin Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.321-322
    • /
    • 2023
  • 본 논문에서는 Scikit-learn 패키지의 LinearRegression 모델과 Keras 딥러닝 모델을 활용하여 수도권 도시 환경 요인에 따른 범죄 발생 건수를 예측 모델을 제안한다. 연구 방법으로 범죄 발생과 유의미한 관계가 있다고 파악되는 수도권의 각 자치구 별 데이터셋을 분석하여, CCTV, 파출소, 가로등의 수가 범죄 발생에 유의미한 영향을 끼치는 것을 확인하였다. 독립 변수들 간에 Scale을 줄이고자 정규화를 진행했고, 종속변수의 정규성 확보를 위해 로그변환을 취했다. 손실 함수는 회귀문제에서 사용되는 'relu'함수를 사용했고 모델의 성능을 확인할 수 있는 지표로 MSE(Mean Squared Error)를 사용해 모델을 구성하였다. 본 논문에서 설계한 이 프로그램은 범죄 발생율이 높은 지역구에 경찰 인력의 추가적 배치, 안전 시설 확충 등 실무적 조치를 취함에 있어 근거를 제공할 수 있을 것으로 사료된다.

  • PDF

Proposal of Maintenance Scenario and Feasibility Analysis of Bridge Inspection using Bayesian Approach (베이지안 기법을 이용한 교량 점검 타당성 분석 및 유지관리 시나리오 제안)

  • Lee, Jin Hyuk;Lee, Kyung Yong;Ahn, Sang Mi;Kong, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.505-516
    • /
    • 2018
  • In order to establish an efficient bridge maintenance strategy, the future performance of a bridge must be estimated by considering the current performance, which allows more rational way of decision-making in the prediction model with higher accuracy. However, personnel-based existing maintenance may result in enormous maintenance costs since it is difficult for a bridge administrator to estimate the bridge performance exactly at a targeting management level, thereby disrupting a rational decision making for bridge maintenance. Therefore, in this work, we developed a representative performance prediction model for each bridge element considering uncertainty using domestic bridge inspection data, and proposed a bayesian updating method that can apply the developed model to actual maintenance bridge with higher accuracy. Also, the feasibility analysis based on calculation of maintenance cost for monitoring maintenance scenario case is performed to propose advantages of the Bayesian-updating-driven preventive maintenance in terms of the cost efficiency in contrast to the conventional periodic maintenance.

Development of Machine Learning Model to Predict the Ground Subsidence Risk Grade According to the Characteristics of Underground Facility (지하매설물 속성을 활용한 기계학습 기반 지반함몰 위험도 예측모델 개발)

  • Lee, Sungyeol;Kang, Jaemo;Kim, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.5-10
    • /
    • 2022
  • Ground Subsidence has been continuously occurring in densely populated downtown. The main cause of ground subsidence is the damaged underground facility like sewer. Currently, ground subsidence is being dealt with by discovering cavities in ground using GPR. However, this consumes large amount of manpower and cost, so it is necessary to predict hazardous area for efficient operation of GPR. In this study, ◯◯city is divided into 500 m×500 m grids. Then, data set was constructed using the characteristics of the underground facility and ground subsidence in grids. Data set used to machine learning model for ground subsidence risk grade prediction. The purposed model would be used to present a ground subsidence risk map of target area.