• Title/Summary/Keyword: 인기 예측

Search Result 77, Processing Time 0.024 seconds

A Study on the Impact Factors of Contents Diffusion in Youtube using Integrated Content Network Analysis (일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구)

  • Park, Byung Eun;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.19-36
    • /
    • 2015
  • Social media is an emerging issue in content services and in current business environment. YouTube is the most representative social media service in the world. YouTube is different from other conventional content services in its open user participation and contents creation methods. To promote a content in YouTube, it is important to understand the diffusion phenomena of contents and the network structural characteristics. Most previous studies analyzed impact factors of contents diffusion from the view point of general behavioral factors. Currently some researchers use network structure factors. However, these two approaches have been used separately. However this study tries to analyze the general impact factors on the view count and content based network structures all together. In addition, when building a content based network, this study forms the network structure by analyzing user comments on 22,370 contents of YouTube not based on the individual user based network. From this study, we re-proved statistically the causal relations between view count and not only general factors but also network factors. Moreover by analyzing this integrated research model, we found that these factors affect the view count of YouTube according to the following order; Uploader Followers, Video Age, Betweenness Centrality, Comments, Closeness Centrality, Clustering Coefficient and Rating. However Degree Centrality and Eigenvector Centrality affect the view count negatively. From this research some strategic points for the utilizing of contents diffusion are as followings. First, it is needed to manage general factors such as the number of uploader followers or subscribers, the video age, the number of comments, average rating points, and etc. The impact of average rating points is not so much important as we thought before. However, it is needed to increase the number of uploader followers strategically and sustain the contents in the service as long as possible. Second, we need to pay attention to the impacts of betweenness centrality and closeness centrality among other network factors. Users seems to search the related subject or similar contents after watching a content. It is needed to shorten the distance between other popular contents in the service. Namely, this study showed that it is beneficial for increasing view counts by decreasing the number of search attempts and increasing similarity with many other contents. This is consistent with the result of the clustering coefficient impact analysis. Third, it is important to notice the negative impact of degree centrality and eigenvector centrality on the view count. If the number of connections with other contents is too much increased it means there are many similar contents and eventually it might distribute the view counts. Moreover, too high eigenvector centrality means that there are connections with popular contents around the content, and it might lose the view count because of the impact of the popular contents. It would be better to avoid connections with too powerful popular contents. From this study we analyzed the phenomenon and verified diffusion factors of Youtube contents by using an integrated model consisting of general factors and network structure factors. From the viewpoints of social contribution, this study might provide useful information to music or movie industry or other contents vendors for their effective contents services. This research provides basic schemes that can be applied strategically in online contents marketing. One of the limitations of this study is that this study formed a contents based network for the network structure analysis. It might be an indirect method to see the content network structure. We can use more various methods to establish direct content network. Further researches include more detailed researches like an analysis according to the types of contents or domains or characteristics of the contents or users, and etc.

Development of Music Recommendation System based on Customer Sentiment Analysis (소비자 감성 분석 기반의 음악 추천 알고리즘 개발)

  • Lee, Seung Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.197-217
    • /
    • 2018
  • Music is one of the most creative act that can express human sentiment with sound. Also, since music invoke people's sentiment to get empathized with it easily, it can either encourage or discourage people's sentiment with music what they are listening. Thus, sentiment is the primary factor when it comes to searching or recommending music to people. Regard to the music recommendation system, there are still lack of recommendation systems that are based on customer sentiment. An algorithm's that were used in previous music recommendation systems are mostly user based, for example, user's play history and playlists etc. Based on play history or playlists between multiple users, distance between music were calculated refer to basic information such as genre, singer, beat etc. It can filter out similar music to the users as a recommendation system. However those methodology have limitations like filter bubble. For example, if user listen to rock music only, it would be hard to get hip-hop or R&B music which have similar sentiment as a recommendation. In this study, we have focused on sentiment of music itself, and finally developed methodology of defining new index for music recommendation system. Concretely, we are proposing "SWEMS" index and using this index, we also extracted "Sentiment Pattern" for each music which was used for this research. Using this "SWEMS" index and "Sentiment Pattern", we expect that it can be used for a variety of purposes not only the music recommendation system but also as an algorithm which used for buildup predicting model etc. In this study, we had to develop the music recommendation system based on emotional adjectives which people generally feel when they listening to music. For that reason, it was necessary to collect a large amount of emotional adjectives as we can. Emotional adjectives were collected via previous study which is related to them. Also more emotional adjectives has collected via social metrics and qualitative interview. Finally, we could collect 134 individual adjectives. Through several steps, the collected adjectives were selected as the final 60 adjectives. Based on the final adjectives, music survey has taken as each item to evaluated the sentiment of a song. Surveys were taken by expert panels who like to listen to music. During the survey, all survey questions were based on emotional adjectives, no other information were collected. The music which evaluated from the previous step is divided into popular and unpopular songs, and the most relevant variables were derived from the popularity of music. The derived variables were reclassified through factor analysis and assigned a weight to the adjectives which belongs to the factor. We define the extracted factors as "SWEMS" index, which describes sentiment score of music in numeric value. In this study, we attempted to apply Case Based Reasoning method to implement an algorithm. Compare to other methodology, we used Case Based Reasoning because it shows similar problem solving method as what human do. Using "SWEMS" index of each music, an algorithm will be implemented based on the Euclidean distance to recommend a song similar to the emotion value which given by the factor for each music. Also, using "SWEMS" index, we can also draw "Sentiment Pattern" for each song. In this study, we found that the song which gives a similar emotion shows similar "Sentiment Pattern" each other. Through "Sentiment Pattern", we could also suggest a new group of music, which is different from the previous format of genre. This research would help people to quantify qualitative data. Also the algorithms can be used to quantify the content itself, which would help users to search the similar content more quickly.

Research on hybrid music recommendation system using metadata of music tracks and playlists (음악과 플레이리스트의 메타데이터를 활용한 하이브리드 음악 추천 시스템에 관한 연구)

  • Hyun Tae Lee;Gyoo Gun Lim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.145-165
    • /
    • 2023
  • Recommendation system plays a significant role on relieving difficulties of selecting information among rapidly increasing amount of information caused by the development of the Internet and on efficiently displaying information that fits individual personal interest. In particular, without the help of recommendation system, E-commerce and OTT companies cannot overcome the long-tail phenomenon, a phenomenon in which only popular products are consumed, as the number of products and contents are rapidly increasing. Therefore, the research on recommendation systems is being actively conducted to overcome the phenomenon and to provide information or contents that are aligned with users' individual interests, in order to induce customers to consume various products or contents. Usually, collaborative filtering which utilizes users' historical behavioral data shows better performance than contents-based filtering which utilizes users' preferred contents. However, collaborative filtering can suffer from cold-start problem which occurs when there is lack of users' historical behavioral data. In this paper, hybrid music recommendation system, which can solve cold-start problem, is proposed based on the playlist data of Melon music streaming service that is given by Kakao Arena for music playlist continuation competition. The goal of this research is to use music tracks, that are included in the playlists, and metadata of music tracks and playlists in order to predict other music tracks when the half or whole of the tracks are masked. Therefore, two different recommendation procedures were conducted depending on the two different situations. When music tracks are included in the playlist, LightFM is used in order to utilize the music track list of the playlists and metadata of each music tracks. Then, the result of Item2Vec model, which uses vector embeddings of music tracks, tags and titles for recommendation, is combined with the result of LightFM model to create final recommendation list. When there are no music tracks available in the playlists but only playlists' tags and titles are available, recommendation was made by finding similar playlists based on playlists vectors which was made by the aggregation of FastText pre-trained embedding vectors of tags and titles of each playlists. As a result, not only cold-start problem can be resolved, but also achieved better performance than ALS, BPR and Item2Vec by using the metadata of both music tracks and playlists. In addition, it was found that the LightFM model, which uses only artist information as an item feature, shows the best performance compared to other LightFM models which use other item features of music tracks.

Breeding of New Ever-bearing Strawberry 'Miha' with High Hardness (고경도 사계성 딸기 '미하' 육성)

  • Jong Nam Lee;Jong Taek Suh;Su Jeong Kim;Hwang Bae Shon;Ki Deog Kim;Hye Jin Kim;Mi Ja Choi;Yul Ho Kim;Su Young Hong
    • Korean Journal of Plant Resources
    • /
    • v.37 no.1
    • /
    • pp.87-92
    • /
    • 2024
  • 'Miha' is a new strawberry (Fragaria x ananassa Duch.) cultivar, which was released by the Highland Agriculture Research Institute in 2019. The 'Miha' cultivar originates from a 2014 cross between 'Monterey' and 'Saebong No. 3', both of which exhibited excellent ever-bearing characteristics, including continuous flowering and large fruits under long-day and high temperature conditions. This new cultivar was initially named 'Saebong No. 12' after examining its characteristics and productivity during summer cultivation between 2015 and 2019. After regional adaptability tests, 'Miha' was selected from 'Saebong No. 12' as an elite cultivar. The general characteristics of 'Miha' include intermediate, elliptic leaves, and strong growth. The fruits are conical and of a dark-red color. The number of leaves of 'Miha' was 21.9, which was 6.2 fewer than that of the control cultivar, 'Goha' with 28.1. The number of flower clusters of 'Miha' was similar to that of 'Goha'. The average fruit weight of 'Miha' was 13.4 g, which was 4.3 g heavier than that of 'Goha'. The fruit hardness of 'Miha' was 36.2 g·mm-2, which was 10.1 g·mm-2 harder than that of 'Goha'. The marketable yield of 'Miha' was 37,393 kg·ha-1, 156% more than that of 'Goha' with 23,970 kg·ha-1. Therefore, the new cultivar of ever-bearing strawberry 'Miha' is expected to be very popular in the export or bakery market because it is hard.

Characteristics and Implications of Sports Content Business of Big Tech Platform Companies : Focusing on Amazon.com (빅테크 플랫폼 기업의 스포츠콘텐츠 사업의 특징과 시사점 : 아마존을 중심으로)

  • Shin, Jae-hyoo
    • Journal of Venture Innovation
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • This study aims to elucidate the characteristics of big tech platform companies' sports content business in an environment of rapid digital transformation. Specifically, this study examines the market structure of big tech platform companies with a focus on Amazon, revealing the role of sports content within this structure through an analysis of Amazon's sports marketing business and provides an outlook on the sports content business of big tech platform companies. Based on two-sided market platform business models, big tech platform companies incorporate sports content as a strategy to enhance the value of their platforms. Therefore, sports content is used as a tool to enhance the value of their platforms and to consolidate their monopoly position by maximizing profits by increasing the synergy of platform ecosystems such as infrastructure. Amazon acquires popular live sports broadcasting rights on a continental or national basis and supplies them to its platforms, which not only increases the number of new customers and purchasing effects, but also provides IT solution services to sports organizations and teams while planning and supplying various promotional contents, thus creates synergy across Amazon's platforms including its advertising business. Amazon also expands its business opportunities and increases its overall value by supplying live sports contents to Amazon Prime Video and Amazon Prime, providing technical services to various stakeholders through Amazon Web Services, and offering Amazon Marketing Cloud services for analyzing and predicting advertisers' advertising and marketing performance. This gives rise to a new paradigm in the sports marketing business in the digital era, stemming from the difference in market structure between big tech companies based on two-sided market platforms and legacy global companies based on one-sided markets. The core of this new model is a business through the development of various contents based on live sports streaming rights, and sports content marketing will become a major field of sports marketing along with traditional broadcasting rights and sponsorship. Big tech platform global companies such as Amazon, Apple, and Google have the potential to become new global sports marketing companies, and the current sports marketing and advertising companies, as well as teams and leagues, are facing both crises and opportunities.

Breeding of New Ever-bearing Strawberry 'Jinha' with High Soluble Solid Content (당도가 높은 사계성 딸기 '진하' 육성)

  • Jong Nam Lee;Jong Taek Suh;Su Jeong Kim;Ki Deog Kim;Hye Jin Kim;Mi Za Choi;Bok Rye Yun;Hwang Bae Shon;Yul Ho Kim;Su Young Hong
    • Korean Journal of Plant Resources
    • /
    • v.37 no.4
    • /
    • pp.386-391
    • /
    • 2024
  • 'Jinha' is a new strawberry (Fragaria × ananassa Duch.) cultivar, which was released by the Highland Agriculture Research Institute in 2019. The 'Jinha' cultivar originates from a 2011 cross between 'Albion' and 'Goha,' both of which exhibited excellent ever-bearing characteristics, including continuous flowering and large fruits under long-day and high temperature conditions. This new cultivar was initially named 'Saebong No. 11' after examining its characteristics and productivity during summer cultivation between 2012 and 2016. After regional adaptability tests, 'Jinha' was selected from 'Saebong No. 11' as an elite cultivar. The general characteristics of 'Jinha' include intermediate, elliptic leaves, and medium growth. The fruits are conical and of a red color. The plant height of 'Jinha' is simiar to that of the control variety, 'Flamenco', but it has a lot of number of leaves. The cluster length of 'Jinha' was 35.5 cm, 10.8 cm longer than 24.7 cm of the control variety. The number of flower clusters of 'Jinha' appeared 14.4, which was 4.1 more than that of 'Flamenco'. The average fruit weight of 'Jinha' was 10.1 g, which was 0.8 g heavier than that of 'Flamenco'. The soluble solid content of 'Jinha' was 10.2 °Brix, which was 2.0 °Brix higher than that of 'Flamenco'. The marketable yield of 'Jinha' was 25,931 kg·ha-1, 440% more than that of 'Flamenco' with 5,900 kg·ha-1. Therefore, the new cultivar of ever-bearing strawberry 'Jinha' is expected to be very popular in the export or bakery market because it is high soluble solid content and good shape.

Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions (Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.227-252
    • /
    • 2018
  • The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.