• Title/Summary/Keyword: 인구 가중치 내삽법

Search Result 3, Processing Time 0.021 seconds

Research on Areal Interpolation Methods and Error Measurement Techniques for Reorganizing Incompatible Regional Data Units : The Population Weighted Interpolation (지역 자료의 공간 단위 재구성 기법 및 에러 검증 : 인구가중치 내삽법)

  • Shin, Jung-Yeop
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.2
    • /
    • pp.389-406
    • /
    • 2004
  • with the increasing popularity of regional studies, the importance of regional data has been recognized dramatically in recent years. However, due to potential problems from the intrinsic characteristics of aggregate regional data for the research, and incompatible regional units between source and target regional data units, the method for reorganizing the regional data units for a given research analysis should be required. In this regard, the purpose of this research is to review the significant interpolation methods for reorganizing the data units and, based on it, to propose the population weighted interpolation method. For the first purpose, areal weighted interpolation method, pycnophylactic method, dasymetric method, area-to-point method were reviewed. The proposed population-weighted interpolation method was applied to the case study of population census regional data in Erie County, NY, compared with areal weighted interpolation method, pycnophylactic method in terms of several statistical characteristics.

  • PDF

Effects of Areal Interpolation Methods on Environmental Equity Analysis (면내삽법이 환경적 형평성 분석에 미치는 영향)

  • Jun, Byong-Woon
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.6
    • /
    • pp.736-751
    • /
    • 2008
  • Although a growing number of studies have commonly used a simple areal weighting interpolation method to quantify demographic characteristics of impacted areas in environmental equity analysis, the results obtained are inevitably imprecise because of the method's unrealistic assumption that population is evenly distributed within a census enumeration unit. Two alternative areal interpolation methods such as intelligent areal weighting and regression methods can account for the distributional biases in the estimation of impacted populations by making use of additional information about the geographic distribution of population. This research explores five areal interpolation methods for estimating the population characteristics of impacted areas in environmental equity analysis and evaluates the sensitivity of the outcomes of environmental equity analysis to areal interpolation methods. This study used GIS techniques to allow areal interpolation to be informed by the distribution of land cover types, as inferred from a satellite image. in both the source and target units. Independent samples t-test statistics were measured to verify the environmental equity hypothesis while coefficients of variation were calculated to compare the relative variability and consistency in the socioeconomic characteristics of populations at risk over different areal interpolation methods. Results show that the outcomes of environmental equity analysis in the study area are not sensitive to the areal interpolation methods used in estimating affected populations, but the population estimates within the impacted areas are largely variable as different areal interpolation methods are used. This implies that the use of different areal interpolation methods may to some degree alter the statistical results of environmental equity analysis.

  • PDF

An Evaluation of a Dasymetric Surface Model for Spatial Disaggregation of Zonal Population data (구역단위 인구자료의 공간적 세분화를 위한 밀도 구분적 표면모델에 대한 평가)

  • Jun, Byong-Woon
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.5
    • /
    • pp.614-630
    • /
    • 2006
  • Improved estimates of populations at risk for quick and effective response to natural and man-made disasters require spatial disaggregation of zonal population data because of the spatial mismatch problem in areal units between census and impact zones. This paper implements a dasymetric surface model to facilitate spatial disaggregation of the population of a census block group into populations associated with each constituent pixel and evaluates the performance of the surface-based spatial disaggregation model visually and statistically. The surface-based spatial disaggregation model employed geographic information systems (GIS) to enable dasymetric interpolation to be guided by satellite-derived land use and land cover data as additional information about the geographic distributor of population. In the spatial disaggregation, percent cover based empirical sampling and areal weighting techniques were used to objectively determine dasymetric weights for each grid cell. The dasymetric population surface for the Atlanta metropolitan area was generated by the surface-based spatial disaggregation model. The accuracy of the dasymetric population surface was tested on census counts using the root mean square error (RMSE) and an adjusted RMSE. The errors related to each census track and block group were also visualized by percent error maps. Results indicate that the dasymetric population surface provides high-precision estimates of populations as well as the detailed spatial distribution of population within census block groups. The results also demonstrate that the population surface largely tends to overestimate or underestimate population for both the rural and forested and the urban core areas.

  • PDF